http://secleanenergy.gatech.edu/files/King.pdf

#### Electrification of Transportation and the Impacts on the Electric Grid

**Clean Energy Speaker Series** 

**Tom King** 

**Oak Ridge National Laboratory** 

April 27th, 2011





#### **Total energy production and use increasing nationally and internationally**



Internat'l Consumption

U.S. Demand and Use (Quads)



# Energy issues can be categorized into two areas – energy security and climate change

#### **Energy Challenge**

#### **Energy Pathway**



The energy solutions for the Nation will place additional burden on the electricity infrastructure

"Electricity, not oil, is the heart of the U.S. energy economy." Peter Huber, The Million-Volt Answer to Oil



### What is energy independence?

#### "Not subject to control of others"

- Websterian

Distribution of Oil Dependence Costs as a % of GDP Fuel Economy Case, OPEC Maintains Scenario Oil Price



D. Greene and P. Leiby, Oak Ridge National Lab

### **National Energy Mix**



### **Electricification: Key Infrastructure Issues Remain**

- Electricity Operations
  - Utilities have excess generation capacity during offpeak hours
  - Insufficient electricity *distribution* capacity for many PEVs to charge at the same time
  - Vehicle and "grid" communication is necessary to avoid negative impacts to distribution system
- Charging Equipment
  - Customers will typically desire rapid response at home and businesses
  - Installation of L2 charging equipment can be challenging: high cost, lengthy time period, complex interactions among City, Utilities, Contractor
  - Pricing of electricity power is unclear
- "Last Mile" Grid System
  - Transformers must accommodate multiple Evs charging in a neighborhood
  - Public charging not guaranteed







Energy Efficiency & Renewable Energy

#### Transportation Electrification Demonstration Projects

#### The largest-ever U.S. deployment of electric-drive vehicles and charging infrastructure

- Deployment of 13,000 electric-drive vehicles, including light-duty, medium-duty, and heavy-duty passenger and commercial vehicles
- Installation of over 22,000 Level 2 charging sites at residential, commercial, and public locations and 350 (500VDC) Fast Chargers
- Collection of detailed operational data from vehicles and charging infrastructure



U.S. DEPARTMENT OF

ENERGY

10 Grants to establish comprehensive educational and outreach programs focused on electric-drive vehicles

 Funding of the first programs to educate first responders and emergency personnel in how to deal with accidents involving EVs and PHEVs

#### Transportation Electrification: EVSE/Vehicle Demonstration Activities



U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

#### Transportation Electrification Data Collection

- Charge event data:
  - Connect, start charge, end charge, and disconnect times
  - Average power (kW), max peak power (kW), total energy (kWh), and rolling 15 minute average peak power (kW)
  - Charger ID, event ID, and date/time stamp

- Driving event data:
  - Data recorded for each key on/key off event
  - Event Type (key on/off), date/time stamp
  - Vehicle ID, Odometer, GPS location
  - Battery SOC, Liquid Fuel consumption







Energy Efficiency & Renewable Energy

#### **Systems Integration of Renewables**

Solar Power

Plug-in Vehicles

Grid Connection and Smart Grid Tools

Vehicle Charging, Energy Storage, and Vehicle Monitoring Systems

#### OAK RIDGE NATIONAL LABORATORY SUSTAINABLE CAMPUS INITIATIVE

### **ORNL** Vision of **PEV** Wireless Charging

- Design a system that focuses on utility to vehicle battery terminal overall efficiency
  - SAE J2954 targets plug-battery efficiency >90%



### Integrating WPT into a PEV

Design and develop antenna system suitable for vehicle integration for stationary, on-road stationary and on-road dynamic charging at high power levels.

Technically: a non-radiating, near field reactive zone power transfer method Practically: a convenient, safe and flexible means to charge electric vehicles.



Vehicle to WPT communications RFID localizer for positioning

Use existing on-board charger, or dedicated fast-charge and energy management strategy

Active zone field meets international standards (ICNIRP)

Smart grid compliant utility feed and modern power electronics



### **ORNL Regional Study of Grid Impacts**

- Electrification of transportation
  - Deployment of high penetration of PHEVs
  - Understand local and regional impacts
- Converse of 2007 PNNL Study (73% of current vehicles can be charged with no new plants if charge only during off-peak)
- Looked at 13 NERC regions covering the U.S.
- Demands and capacity from EIA's Annual Energy Outlook 2007
  - No added capacity for new demands
- Two time periods: 2020 and 2030
- Vary timing of charging
  - When plugged in
  - For how long
- Vary power level
  - Voltage
  - Amperage

13 Managed by UT-Battelle for the U.S. Department of Energy



### **How Many Vehicles Will There Be?**

- EPRI target is 10% of sales by 2017, +2%/yr thereafter
- ORNL study assumed 25% by 2020, flat thereafter
- DOE Multi-path study has entry in 2018, growth to 50% by 2040 (PHEV10 and E-REV40)
- Value Proposition Study (E30 PHEV30) used minimum viable market share, 10% by 2030
- Market Introduction Study looked at accelerating growth through policies
  - Span of growth predictions through 2020 roughly tracks the EPRI (high-side) and VPS (low-side) curves









### What Power Level Will People Use?

#### • 120V 15A load ≈ 1.4kW (Level 1)

- Allows use of regular wall plug\*
- Slow charging, 5 8 hours
- Low power level has less impact on infrastructure
- 240V 30A ≈ 6kW (Level 2)
  - Homes require higher cost circuit
  - Significant fraction of house demand
  - Multiple cars/homes could overload equipment
  - SAEJ1772 standard up to 240V 72A ≈ 17kW
- 480V 400A ≈ 192kW (Level 3)



\* Electrical code requires separate circuit for electric vehicles



### **When Will People Charge?**

- Charging at night is best for the utility
  - More fully use existing capacity
  - Save on infrastructure expansion
  - Less stress on the grid
- Charging ASAP can be best for customer
  - Convenience



- If vehicle may be used in evening before off-peak power is available
- Even peak electric prices may be lower than gasoline
  - 20 ¢/kWh ÷ 4 mile/kWh = 5 ¢/mile
  - \$4/gallon ÷ 40 mile/gal = 10 ¢/mile
- Utilities need to incentivize delaying when PHEV plugged in
  - Lower rates during nighttime (e.g., time of use rates, real time rates)
  - Smart Chargers are needed to automate charging optimization



#### Evening Charging Grid Impacts (2 kW/vehicle charging rate, ECAR 2020)

• Evening (5-6 pm) plug-in can hit at peak for most weeks



17 Managed by UT-Battelle for the U.S. Department of Energy

National Laboratory

#### Night-time Charging Grid Impacts (2 kW/vehicle charging rate, ECAR 2020)

• Night (10-11 pm) plug-in puts load in the valley



18 Managed by UT-Battelle for the U.S. Department of Energy

National Laboratory

## **Charging Impact Study**

 Higher power and earlier plug-in time will affect peak production



19 Managed by UT-Battelle for the U.S. Department of Energy

## Peak Increase can be Significant

- Little or no impact with night charging
  - High power charging can cause new peak from spike
- Evening charging can raise system peaks
  - Even low power charging raises demand





### **Distribution Impacts**

- Increased load density in existing areas
  - Local peaks may not match system peaks
  - Equipment may require offpeak cool-down
  - One analysis shows a 93% reduction in transformer life
- Charging at home, business, or high-power charging at stations will have different impacts
  - Timing of loads
    Billing
  - Power level
    Control of batteries
- Smart-charging allows shaping of load to help the grid



## **Smart Grid Can Have Varied IQ**

- Simple timer to delay charging
- Price-responsive charging (real-time or TOU)
- Cut-off charging during critical peaks
- Emergency power supply for home or business
- Charging and discharging based on market conditions
- Ancillary services (reactive power, regulation, reserves)
- Utilities may also install distributed stationary storage to shape and control loads



### **Breakthroughs are needed in energy** storage

- Cost reductions
  - raw materials
  - materials processing & manufacturing
  - cell and module packaging
- Performance
  - discharge pulse power limitations at low temperatures
  - capacity and power fading
  - power and energy densities
- Abuse Tolerance / Safety
  - short circuits
  - overcharge, over-discharge
  - fire or high temperatures
  - thermal runaway
  - extended life



Technology and Applied **R&D** Needs for **Electrical Energy Storage** Resource Document for the Workshop on Basic Research Needs for Electrical Energy Storage



33 Managed by UT-Battelle for the U.S. Department of Energy

DOE, Energy Storage Research and Development Annual Progress Report 2008

#### **ORNL** is addressing two problems:

- **1. Batteries not being manufactured in the U.S.**
- 2. Batteries not lasting long enough or performing well enough



Study degradation mechanisms and develop new materials and concepts for batteries

100.00 Capacity 95.00 inal C/1 90.00 of orig -Cell 3 - 25C Cell 10 - 25C Cell 1 - 35C centage 85.00 Cell 9 - 35C Cell 7 - 45C II8-45C Per Cell 12 - 45C 80.00 -Cell 4 - 55C -Cell 5 - 55C - Cell 11 - 55C 75.00 2 3 6 0 5 **Calendar Months** 

34 Managed by UT-Battelle for the U.S. Department of Energy

## **Example for ORNL research:** In Situ Microscopy For Battery And Fuel Cell Research At the Nano-scale





### **Example for ORNL research:** Acoustic emission and other methods to understand degradation mechanisms





### **Further Information**

Regional impact of PHEVs on the grid

http://info.ornl.gov/sites/publications/Files/Pub7922.pdf

Value Proposition Study Final Report

http://info.ornl.gov/sites/publications/Files/Pub23365.pdf

Market Introduction Study

http://info.ornl.gov/sites/publications/Files/Pub14078.pdf

For further info, contact: hadleysw@ornl.gov 865-574-8018



#### **Contact information:**

Thomas King kingtjjr@ornl.gov 865-241-5756

#### www.ornl.gov/eere

