"Mathcad_waves_lecture_3.xmcd"

Assign wave parameters: $\lambda:=\mathbf{5 c m} \quad$ Wave velocity: $\mathbf{v}:=\mathbf{1} \frac{\mathbf{c m}}{\mathbf{s}} \quad \mathbf{k}:=\frac{2 \pi}{\lambda} \quad \omega:=\frac{2 \pi \cdot \mathbf{v}}{\lambda}$
For moving wave described by: $\quad \sin (k \cdot x-\omega \cdot \mathbf{t})$

Trap this wave in a 1D box running from $\mathrm{x}=0$ to $\mathrm{x}=\mathrm{L}$ with: $\quad \mathrm{L}:=\mathbf{5 c m}$

```
wave}\mp@subsup{\mathrm{ right_1 }}{(\mathbf{x},\mathbf{t}):=\boldsymbol{\operatorname{sin}}(\mathbf{k}\cdot\mathbf{x}-\omega\cdot\mathbf{t})}{
```

This reflects back to left at $\mathrm{x}=\mathrm{L}$ forming:

$$
\text { wave }_{\text {left_1 }}(\mathbf{x}, \mathbf{t}):=\sin [\mathbf{k} \cdot(2 L-\mathbf{x})-\omega \cdot \mathbf{t}] \quad \text { this properly matches waves } R 1 \& L 1 \text { at } x=L: \sin (k L-\omega t)=\sin (k(2 L-L)-\omega t)
$$

And then wave L1 reflects reaches left end of box (at $x=0$), it reflects back to right:

$$
\text { wave }_{\text {right_2 }}(x, t):=\sin [k \cdot(2 L+x)-\omega \cdot t] \quad \text { properly matching waves L1 \& R2 at } x=0: \quad \sin (k(2 L-0)-\omega t)=\sin (k(2 L+0)-\omega t)
$$

And then wave $R 3$ when it reaches right end of box (at $x=L$), this wave reflects back to left:

$$
\text { wave }_{\text {left_2 }}(x, t):=\sin [k \cdot(4 L-x)-\omega \cdot t] \quad \text { properly matching waves } R 2 \& L 2 \text { at } x=L: \sin (k(2 L+L)-\omega t)=\sin (k(4 L-L)-\omega t)
$$

And then wave $L 2$ when it reaches right end of box (at $x=0$), this wave relfecs back to right:

$$
\text { wave }_{\text {right_3 }}(x, t):=\sin [k \cdot(4 L+x)-\omega \cdot t] \quad \text { properly matching waves } L 2 \& R 3 \text { at } x=0: \sin (k(4 L-0)-\omega t)=\sin (k(4 L+0)-\omega t)
$$

So, looking at series, sum of waves (through 2N terms):

$$
\text { wave_total }(x, \mathbf{t}, \mathbf{N}):=\sum_{i=0}^{N} \sin [k \cdot(\mathbf{N} \cdot \mathbf{i} \cdot \mathbf{L}+\mathbf{x})-\omega \cdot \mathbf{t}]+\sum_{i=1}^{\mathbf{N}} \sin [k \cdot(\mathbf{2} \cdot \mathbf{i} \cdot \mathbf{L}-\mathbf{x})-\omega \cdot \mathbf{t}]
$$

Check by putting consecutive waves, offset from one another, in single animation.

Make sure as descend (from wave to its reflection) that waves are indeed mirrored at boundary:

YES, consecutive waves stay matched at edges

Add initial wave + 24 reflections. Animate versus time while slowly increasing the wavelength

$$
\begin{array}{ll}
\lambda:=(\text { FRAME }+\mathbf{1}) \cdot \frac{\mathbf{c m}}{20} & \text { time }:=\text { FRAME } \\
\underset{M}{\lambda}:=\mathbf{1} \frac{\mathbf{c m}}{\mathbf{s}}:=\mathbf{5 c m} \\
& \underset{\sim m}{ }:=\frac{2 \pi}{\lambda}
\end{array}
$$

$\underset{\operatorname{wave} \operatorname{total}}{\operatorname{wan}}(\mathbf{t}, \mathbf{N}):=\sum_{\mathbf{i}=\mathbf{N}}^{\mathbf{N}} \sin [\mathbf{k} \cdot(\mathbf{2} \cdot \mathbf{i} \cdot \mathbf{L}+\mathbf{x})-\omega \cdot \mathbf{t}]+\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{N}} \sin [\mathbf{k} \cdot(\mathbf{2} \cdot \mathbf{i} \cdot \mathbf{L}-\mathbf{x})-\omega \cdot \mathbf{t}]$

