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Photonic band-gap crystals 
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Abstract. The analogy between electromagnetic wave propagation in  multidimensionally 
periodic s t ~ c t u r e ~  and electron wave propagation in real crystals has proven to be a very 
fruitful one. Initial effom were motivated by the prospect o f  a photonic band gap, a frequency 
band in three-dimensional dielectric stmctures in which electromagnetic Waves are forbidden. 
irrespective of propagation direetion in space. Today many new ideas and applications are being 
persued in two and three dimensions, and in metallic. dielectric and acoustic Structures, etc. 

In this paper, we review Ihe early motivalions for this work. which were derived from 
the need for a photonic band gap in quantum optics. This led 10 a series of experimental 
and lheoretical searches for the elusive photonic band-gap StNCIUreS. those three-dimensionally 
periodic dielectric SINCtUWS which are to pholon waves what semiconductor crystals are 10 
electron waves. Then we describe how the photonic semiconductor can be ‘doped’. producing 
tiny electromagnetic cavities. Finally, we wi l l  summarize some o f  the anticipated implications 
of photonic band SlNCtUre for quantum electronics and the prospects for the creation of photonic 
crystals in the oplical domain. 

1. Introduction 

In this review we will pursue the rather appealing analogy [1,2] between the behaviour 
of electromagnetic waves in artificial three-dimensionally periodic, dielectric structures and 
the rather more familiar behaviour of electron waves in natural crystals. 

These artificial two- and three-dimensionally periodic structures we will call ‘photonic 
crystals’. The familiar nomenclature of real crystals will be carried over to the electro- 
magnetic case. This means that the concepts of reciprocal space, Brillouin zones, dispersion 
relations, Bloch wavefunctions, Van Hove singularities, etc., must now be applied to photon 
waves. It makes sense then to speak of photonic band structure and of a photonic reciprocal 
space, which has a Brillouin zone approximately 1000 times smaller than the Brillouin zone 
of the electrons. Owing to the periodicity, photons can develop an effective mass, but this 
is in no way unusual, since it  occurs even in  one-dimensionally periodic, optically layered, 
structures. We will frequently leap back and forth between the conventional meaning of 
a familiar concept like ‘conduction band’ and its new meaning in the context of photonic 
band structure. 

Under favourable circumstances, a ‘photonic band gap’ can open up, a frequency band in 
which electromagnetic waves are forbidden, irrespective of propagation direction in space. 
Inside a photonic band gap, optical modes, spontaneous emission and zero-point fluctuations 
are all absent. Because of its promised ability to control spontaneous emission of light in 
quantum optics, the pursuit of a photonic band gap has been a major motivation for studying 
photonic band structure. 
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2. Motivation 

Spontaneous emission of light is a major natural phenomenon which is of great practical 
and commercial importance. For example, in semiconductor lasers, spontaneous emission 
is the major sink for threshold current, which must be surmounted in order to initiate lasing. 
In heterojunction bipolar transistors (HBTS). which are non-optical devices, spontaneous 
emission nevertheless rears its head. In some regions of the transistor current-voltage 
characteristic, spontaneous optical recombination of electrons and holes determines the HET 
current gain. In solar cells, surprisingly, spontaneous emission fundamentally determines the 
maximum available output voltage. We will also see that spontaneous emission determines 
the degree of photon-number-state squeezing, an important new phenomenon [3] in the 
quantum optics of semiconductor lasers. Thus the ability to control spontaneous emission 
of light is expected to have a major impact on technology. 

The easiest way to understand the effect of a photonic band gap on spontaneous emission 
is to take note of Fermi’s golden rule. The downward transition rate w between the filled 
and empty atomic levels is given by 

where I VI is sometimes called the zero-point Rahi matrix element and p(E)  is the density 
of the final states per unit energy. In spontaneous emission, the density of final states is the 
density of optical modes available to the photon. If there are no optical modes available, 
there will be no spontaneous emission. 

Before the 1980s. spontaneous emission was often regarded as a natural and inescapable 
phenomenon, one over which no control was possible. In spectroscopy it gave rise to the 
term ‘natural linewidth’. However, in 1946, an overlooked note hy Purcell [4] on nuclear 
spin levels had already indicated that spontaneous emission could be controlled. In the early 
1970s, interest in this phenomenon was reawakened by the surfaceadsorbed dye molecule 
fluorescence studies [5] of Drexhage. Indeed, during the mid-1970s. Bykov proposed [6] 
that one-dimensional periodicity inside a coaxial line could influence spontaneous emission. 
The modem era of inhibited spontaneous emission dates from the Rydberg atom experiments 
of Kleppner. A pair of metal plates acts as a waveguide. with a cut-off frequency for one 
of the two polarizations, as shown in figure 1. Rydberg atoms are atoms in very-high-lying 
principal-quantum-number states, which can spontaneous emit in the microwave region of 
wavelengths. Kleppner et al 171 showed that Rydberg atoms in a metallic waveguide could 
be prevented from undergoing spontaneous decay. There were no modes available below 
the waveguide cut-off. 

There is a problem with metallic waveguides, however. They do not scale well into 
optical frequencies. At high frequencies, metals become more and more lossy. These 
dissipative losses allow for virtual modes, even at frequencies that would normally be 
forbidden. Therefore, it makes sense to consider smchlres made of positivedielectric- 
constant materials such as glasses and insulators, rather than metals. These can have very 
low dissipation, even all the way up to optical frequencies. This is ultimately exemplified 
by optical fibres, which allow light propagation over many kilometres with negligible losses. 
Such positive-dielechic-constant materials can have an almost purely real dielectric response 
with low resistive losses. If arrayed into a three-dimensionally periodic dielectric smcture, a 
photonic band gap should be possible, employing a purely real, reactive, dielectric response. 

The benefits of such a photonic band gap for direct-gap semiconductors are illustrated 
in figure 2. On the right-hand side is a plot of the photon dispersion (frequency versus 
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Figure 1. Electromagnetic wave dispersion behveen Figure 2 On the right is the electromagnetic 
a pair of metal plates. The waveguide dispersion dispersion. with a forbidden gap at the wavevector 
has a cut-off frequency below which there are no of the periodicity. On the left is the electmn wave 
electromagnetic modes, and there is no spontaneous dispersion typical of a direa-gap semicanductor, the 
emission allowed. dots representing elecbvns and holes. Since the 

photonic band gap swaddles the elecunnic band edge, 
elecWn-hole recombination into photons is inhibitd. 
The photons have no place to go. 

wavevector). On the left-hand side, sharing the same frequency axis, is a plot of the 
electron dispersion, showing conduction and valence bands appropriate to a direct-gap 
semiconductor. Since atomic spacings are 1000 times shorter than optical wavelengths, 
the electron wavevector must be divided by 1000 in order to fit on the same graph with 
the photon wavevectors. The dots in the conduction and valence bands are meant to 
represent electrons and holes respectively. If an electron were to recombine with a hole, they 
would produce a photon at the electronic band-edge energy. As illustrated in figure 2, if a 
photonic band gap straddles the electronic band edge, then the photon produced by electron- 
hole recombination would have no place to go. The spontaneous radiative recombination 
of electrons and holes would be inhibited. As can be imagined, this bas far-reaching 
implications for semiconductor photonic devices. 

One of the most important applications of inhibited spontaneous emission is likely to be 
the enhancement of photon-number-state squeezing, which has been playing an increasing 
role in quantum optics lately. The form of squeezing introduced by Yamamoto 131 is 
particularly appealing, i n  that the active element producing the squeezing effect is none 
other than the common resistor. When an electrical current flows, it generally carries 
the noise associated with the graininess of the electron charge, called shot noise. The 
corresponding mean-square current fluctuations are 

((Ai)')  = 2eiAf (2) 

where i is the average current flow, e is the electronic chargeand Af is the noise bandwidth. 
While equation (2)  applies to many types of random physical processes, it is far from 
universal. Equation (2)  requires that the passage of electrons in the current flow be a 
random Poisson process. As early as 1954, Van der Ziel [8],  in an authoritative hook called 
Noise, pointed out that good-quality metal film resistors, when carrying a current, generally 
exhibit much less noise than that given by equation (2). Apparently, the flow of electrons in 
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the Fermi sea of a metallic resistor represents a highly correlated process. Far from being a 
random process, the electrons apparently sense one another, producing shot noise far below 
that in  equation (2) (so low as to be difficult to measure and to distinguish from thermal or 
Johnson noise). Sub-Poisson shot noise has the following meaning: Suppose the average 
flow consists of 10 electrons per nanosecond. Under random flow, the count in successive 
nanoseconds could sometimes vary from about 8 to 12 electrons. With good-quality metal 
film resistors, the electron count would be 10 for each and every nanosecond. 

Figure 3. A highquantum-efficiency laser diode 
converts the Correlated Row of electrons f" a low- 
shot-noise resistor into photon-numher-shte squeezed 
light. Random spontaneous emission outside the desired 
cavity mode limits the aminable n o i s  reduction. 

Figure 4. The faceanbed cubic Brillouin zone in 
reciprocal space. 

Yamamoto put this property to good use by driving a high-quantum-efficiency laser 
diode with such a resistor as shown in figure 3. Suppose the laser diode quantum efficiency 
into the cavity mode were 100%. m e n  for each electron passing through the resistor there 
would be one photon emitted into the laser cavity mode. A correlated stream of photons is 
produced whose statistical properties are unprecedented since Einstein's interpretation of the 
photoelectric effect. If the photons are used for optical communication, then a receiver would 
detect exactly 10 photoelectrons each nanosecond. If 11  photons were detected, it would 
be no mere random fluctuation, but would represent an intentional signal. Thus information 
in an optical communications signal could be encoded at the level of individual photons. 
The name photon-number-state squeezing is associated with the fixed photon number per 
unit time interval. Expressed differently, the bit error rate in optical communication can be 
diminished by squeezing. 

There is a limitation to the squeezing, however. The quantum efficiency into the lasing 
mode is not 100%. The 41r steradians outside the cavity mode can capture a significant 
amount of random spontaneous emission. If unwanted electromagnetic modes captured 
50% of the excitation, then the maximum noise reduction in squeezing would be only 3 dB. 
Therefore, it is necessary to minimize the spontaneous recombination of electrons ar.d holes 
into modes other than the lasing mode. If such random spontaneous events were reduced 
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to I%, allowing 99% quantum efficiency into the lasing mode, the corresponding noise 
reduction would be 20 dB, well worth fighting for. Thus we see that control of spontaneous 
emission is essential for deriving the full benefit from photon-number-state squeezing. 

We have motivated the study of photonic band structure for its applications in 
quantum optics and optical communications. Positive dielectric constants and fully three- 
dimensional forbidden gaps were emphasized. It is now clear that the generality of artificial, 
multidimensional, band-structure concepts allows for other types of waves, other materials 
and various lower-dimensional geometries, limited only by imagination and need. 

3. Search for the photonic band gap 

Having decided to create a photonic band gap in three dimensions, we need to 
settle on a particular three-dimensionally periodic geometry. For electrons, the three- 
dimensional crystal structures come from nature. Several hundred years of mineralogy 
and crystallography have classified the naturally occurring three-dimensionally periodic 
lattices. For photonic band gaps, however, we must create an artificial structure using 
our imagination. 

The face centred cubic (FcC) lattice appears to be favoured for photonic band gaps, and 
was suggested independently by Yablonovitch [ I ]  and John [2] in their initial proposals. 
Let us consider the FCC Brillouin zone (BZ) as illustrated in figure 4. Various special points 
on the surface of the BZ are mmked. Closest to the centre is the L point, oriented towards 
the body diagonal of the cube. Farthest away is the W point, a vertex where four plane 
waves are degenerate (which will cause problems later on). In the cubic directions are the 
familiar X points. 

Figure 5. The forbidden gap (shaded) at the L point 
is centred at a frequency - 14% lower than the X 
point forbidden gap. Therefore, it is difficult to create a 
forbidden frequency band overlapping all points along 
the surface of the Brillouin zone. 

Figure 6. Two common Brillouin zones for M y -  
centrid and face-centred cubic. The FCC case deviates 
l e s t  from P sphere. favouring P common overlappin% 
band in all directions a i  space. 

Consider a plane wave in the X direction. It will sense the periodicity in the cubic 
direction, forming a standing wave, and opening up a forbidden gap as indicated by the 
shading in figure 5. Suppose, on the other hand, that the plane wave is going in the L 
direction. It will sense the periodicity along the cubic body diagonal, and a gap will form 
in that direction as well. But the wavevector to the L point is about 14% smaller than the 
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wavevector to the X point. Therefore, the gap at L is likely to be centred at a 14% smaller 
frequency than the gap at X. If the two gaps are not wide enough, they are unlikely to 
overlap in frequency. In figure 5 as shown, the two gaps barely overlap. This is the main 
problem in achieving a photonic band gap. It is difficult to ensure that a common frequency 
overlap is assured for all possible directions in reciprocal space. 

The lesson from figure 5 is that the Brillouin zone should most closely resemble a sphere 
in order to increase the likelihood of a common frequency overlap in all directions of space. 
Therefore, let us look at the two common Brillouin zones in figure 6. the FCC BZ and the 
body-centred cubic (BCC) BZ. The BCC BZ has ‘pointed’ vertices, which make it difficult to 
achieve a common frequency overlap in all directions. Likewise, most other common ~ z s  
deviate even farther from a spherical shape. Among all the common BZs the FCC has the 
least percentage deviation from a sphere. Therefore up until now most photonic band gaps 
in three dimensions have been based on the FCC lattice. (There has been a report recently 
of a photonic band gap in a simple cubic geometry [9]). 

The photonic band gap is different h m  the idea of a one-dimensional stop band as 
understood in electrical engineering. Rather, the photonic band gap should be regarded as 
a stop band with a common frequency overlap in all 41r steradians of space. The earliest 
antecedent to photonic band structure, dating back to 1914 [IO] and Sir Lawrence Bragg, 
is the ‘dynamical theory of x-ray diffraction’. Nature gives us face-centred cubic crystals 
and x-rays are bona@@ electromagnetic waves. As early as 1914, narrow stop bands were 
known to open up. Therefore, what was missing? 

The refractive-index contrast for x-rays is tiny, generally less than one part in lo4. The 
forbidden x-ray stop bands form extremely narrow rings on the facets of the BZ. As the 
index contrast is increased, the narrow forbidden rings open up, eventually covering an 
entire facet of a BZ and ultimately covering all directions in reciprocal space. We will see 
that this requires an index contrast 2 2 : 1. The high index contrast is the main new feature 
of photonic band structure beyond dynamical x-ray diffraction. In addition, we will see that 
electromagnetic wave polarization, which is frequently overlooked for x-rays, will play a 
major role in photonic band structure. 

ANECHOIC CHAMBER 

-- 
X-Y RECORDER 

Figure 7. A homodyne detenion system for 
measuring phase and amplitude in UJnSmis- 
sion through the photonic crystal under test. 
A sweep oscillator feeds a IO dB splitter. 
P M  of thc signal is modulated (MOD) and 
then propagated as a plane wave lhraugh the 
lest crystal. The other pM of the sigrwl is 
used as local oscillator for thc mixer (MXR) 

to measure lhe amplitude change and phase 
shift in the crystal. Between the mixer and 
the X-Y recorder is B lock-in amplifier (not 
shown). 

In approaching this subject, we adopted an empirical viewpoint. We decided to make 
photonic crystals on the scale of microwaves, and then we tested them using sophisticated 
coherent microwave instruments. The test set-up, shown in figure 7, is what we would call 
in optics a Mach-Zender interferometer. It is capable of measuring phase and amplitude in 
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transmission through the microwave-scale photonic crystal. In principle, one can determine 
the frequency versus wavevector dispersion relations from such coherent measurements. 
Later on we used a powerful commercial instrument for this purpose. the HP 8510 Network 
Analyser. The philosophy of the experiments was to measure the forbidden gap in all 
possible internal directions in reciprocal space. Accordingly, the photonic crystal was 
rotated and the transmission measurements repeated. Owing to wavevector matching along 
the surface of the photonic crystal, some internal angles could not be accessed. To overcome 
this, large microwave prisms, made out of poly(methy methacrylate), were placed on either 
side of the test crystal in figure 7. 

Early on the question m s e ,  of what material the photonic crystal should be made? The 
larger the refractive-index contrast, the easier it would be to find a photonic band gap. In 
optics, however, the largest practical index contrast is that of the common semiconductors, 
Si and GaAs, with a refractive index n = 3.6. If that index was inadequate, then photonic 
crystals would probably never fulfill the goal of being useful in optics. Therefore, we 
decided to restrict the microwave refractive index to 3.6, and the microwave dielectric 
constant to n2 = 12. A commercial microwave material, Emerson & Cumming Stycast 
12, was particularly suited to the task since it was machinable with carbide tool bits. Any 
photonic band structure that was found in this material could simply be scaled down in 
size. and would have the identical dispersion relations at optical frequencies and optical 
wavelengths. 

With regard to the geometry of the photonic crystal, there are a universe of possibilities. 
So far, the only restriction we have made is towards face-centred cubic lattices. It turns 
out that a crystal, with an FCC BZ in reciprocal space, as shown in figure 4, is composed 
of FCC WignerSeitz (ws) unit cells in real space as shown in figure 8. The problem of 
creating an arbitray FCC dielectric structure reduces to the problem of filling the FCC ws 
real-space unit cell with an arbitrary spatial distribution of dielectric material. Real space 
is then filled by repeated translation and close packing of the ws unit cells. The decision 
before us, is what to put inside the FCC Wigner-Seitz cells? There are an infinite number 
of possible FCC lattices, since anything can be put inside the fundamental repeating unit. In 
x-ray language, we have,to find a ‘form factor’ for the ws unit cell that would produce a 
crystal with a photonic band gap. 

This question provoked strenuous difficulties and false starts over a period of several 
years before finally being solved. In the first years of this research, we were unaware of how 
difficult the search for a photonic band gap would be. A number of FCC crystal structures 
were proposed, each representing a different choice for filling the rhombic dodecahedron 
FCC WS cells in real space. For example, the very first suggestion [ I ]  was to make a three- 
dimensional ‘checker-board‘ as in figure 9, in which cubes were inscribed inside the FCC 
WS real-space cells in figure 8. Later on, the experiments [ I l l  adopted spherical ‘atoms’ 
centred inside the FCC ws cell were composed of precision AI203 spheres, n - 3.06, each - 6 mm in diameter. This structure was tested at a number of filling ratios from close 
packing to very dilute. Nevertheless, it always failed to produce a photonic band gap! 

Then we tested the inverse structure in which spherical voids were inscribed inside the 
FCC ws real-space cell. These could be easily fabricated by drilling hemispheres onto the 
opposite faces of a dielectric sheet with a spherical drill bit as shown in figure 10. When 
the sheets were stacked up so that the hemispheres faced one another, the result was an 
FCC array of spherical voids inside a dielectric block. These were also tested over a wide 
range of filling ratios by progressively increasing the diameter of the hemispheres. These 
also failed to produce a photonic band gap! 

The typical failure mode is illustrated in figure 11. As expected the ‘conduction band’ 
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Figure 8. The Wigner-Scilz rea-space unit cell of the 
FE lattice is a rhombic dodecahedmn. (a) Slightly 
oversized spherical voids are inscribed into the unit 
cell, breaking through the faces, as illustrated by hmken 
circles. (b )  The ws cell shudure possessing a photonic 
band gap. Cylindrical holes are drilled thmugh the 
tap three facets of the rhombic dodecahedron and exit 
through lhe bottom lhree facets. The resulting atom6 
are roughly cylindrical. and have a preferred axis in the 
vertical direction. 

Figure 9. A face-centred cubic crystal rn which the 
individual ws cells are inscribed with cutes stacked in 
a th-dimensional 'checker-hoard'. 

50% VOLUME FRACTION fcc AIR-SPHERES 

Figure 10. Conshuction of pcc crystals consisting of 
spherical voids. Hemispherical holes drilled on both 
faces of a dielecvic sheet. When the sheets are stacked 
up, the hemispheres meet. producing an FCC crystal. 

PREDOMINANTLY "P" POLARIZED 
Figure 11. Typical semi-metallic band smchlre 
ioor a photonic crystal with no photonic hand gap 
(50% ~olume franion pcc 'air-atoms'. predominantly 
p polarized. n l / n o  = 1.6). An overlap exists khveen 
the conduction band at L and the valence band at W. 

at the L point falls at a low frequency, while the 'valence band' at the W point falls at a 
high frequency. The overlap of the bands at L and W results in a band sbllcture that is best 
described as 'semi-metallic'. 
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The empirical search for a photonic band gap led nowhere until we tested a spherical 
void structure with oversized voids breaking through the walls of the ws unit cell as shown 
in figure 8@). For the first time, the measurements seemed to indicate a photonic band 
gap and we published [ l l ]  the band structure shown in figure 12. There appeared to be a 
narrow gap, centred at 15 GHz, and forbidden for both possible polarizations. Unbeknown 
to us, however, figure 12 harboured a serious error. Instead of a gap at the W point, the 
conduction and valence bands crossed at that point, allowing the bands to touch. This 
produced a pseudo-gap with zero density of states but no frequency width. The error 
arose due to the limited size of the crystal. The construction of crystals with - lo4 atoms 
required tens of thousands of holes to be drilled. Such a three-dimensional crystal was still 
only 12 cubic units wide, limiting the wavevector resolution, and restricting the dynamic 
range in transmission. Under these conditions, it was experimentally difficult to notice a 
conduction-valence band degeneracy that occurred at an isolated point in k-space, such as 
the W point. 

Figure 12 The purported photonic band structure 
of the spherical void strumre shown in figure 8(a). 
The right-sloping lines represent polarization parallel to 
the X plane. while the left-sloping lines represent the 
orthogonal polaridon. which has a partial component 
out of the X plane. The cross-hatched region is the 
rrported photonic band gap. The figure fails to show 
the cmssing of the valenee and conduction bands at the 
W point, which was first discovered by theory. 

Figurr 13. The method of constructing an FCC lattice 
of the WignerSeitz cells as shown in figure 8(b). A 
slab of material is covered by a mask consisting of a 
triangular array of holes Each hole is drilled through 
three times, at an angle 35.26’ away from normal, and 
spread out 120“ on lhe azimuth. The resulting criss- 
cross of holes helow the surface of the slab, suggested 
by the mss-hatching shown hem produces a fully 
threedimensionally periodic FCC ~Iruct~re.  with unit 
cells as given by figure 8(b). The drilling can be done 
by a real drill bit for microwave work. or by reactive ion 
etching to create an FU: structure at optical wavelengths. 

While we were busy with the empirical search, theorists began serious efforts to 
calculate photonic band structure. The most rapid progress was made not by specialists 
in electromagnetic theory, but by electronic band-structure theorists who were accustomed 
to solving Schrodinger’s equation in three-dimensionally periodic potentials. The early 
calculations [12-151 were unsuccessful, however. As a short-cut, they treated the 
electromagnetic field as a scalar, much as is done for electron waves in Schrodinger’s 
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equation. The scalar wave theory of photonic band structure did not agree well with 
experiment. For example, it predicted photonic band gaps in the dielectric sphere structure, 
where none were observed experimentally. The approximation of Maxwell's equations as 
a scalar wave equation was not working. Finally, incorporating the full vector Maxwell's 
equations, theory began to agree with experiment. Leung [I61 was probably the first to 
publish a successful vector wave calculation in photonic band structure, followed by others 
[17, 181, with substantially similar results. The theorists agreed well with one another, 
and they agreed well with experiment [ I l l ,  except at the high-degeneracy points U and, 
particularly, W. What the experiment failed to see was the degenerate crossing of valence 
and conduction bands at those points. 

The unexpected pseudo-gap in the Fa: crystal triggered concern and a search for a way 
to overcome the problem. A worried editorial [I91 was published in Nature. But even before 
the editorial appeared, the problem had already been solved by the Iowa State group of Ho, 
Chan and Soukoulis [IS]. The degenerate crossing at the W point was very susceptible to 
changes in symmetry of the structure. If the symmetry was lowered by filling the ws unit 
cell, not by a single spherical atom, but by two atoms positioned along the (1 1 1) direction 
as in diamond structure, then a full photonic band gap opened up. Their discovery of a 
photonic band gap using a diamond 'form factor' is particularly significant since diamond 
geometry Seems to be favoured by Maxwell's equations. A form of diamond structure [ZO] 
gives the widest photonic band gaps requiring the least index contrast n - 1.87. 

More generally, the spherical void symmetry in figure 8(a) can be lowered by distorting 
the spheres along the (1  1 1) direction, lifting the degeneracy at the W point. The ws unit 
cell in figure 8 ( b )  has great merit for this purpose. Holes are drilled through the top three 
facets of the rhombic dodecahedron and exit through the bottom three facets. The beauty 
of the structure in figure 8(b) is that a stacking of ws unit cells results in straight holes 
that pass clear through the entire 'crystal'! The 'atoms' are odd-shaped, roughly cylindrical 
voids centred in the ws unit cell, with a preferred axis pointing to the top vertex, (1 I I ) .  
An operational illustration of the construction that produces an FCC 'crystal' of such WS 
unit cells is shown in figure 13. 

A slab of material is covered by a mask containing a triangular array of holes. Three 
drilling operations are conducted through each hole, 35.26" off normal incidence and spread 
out 120" on the azimuth. The resulting criss-cross of holes below the surface of the slab 
produces a fully three-dimensionally periodic FCC structure, with ws unit cells given by 
figure 8(b)! The drilling can be done by a real drill bit for microwave work, or by reactive 
ion etching to create an FCC structure at optical wavelengths. 

In spite of non-spherical atoms in figure 8(b), the Brillouin zone (62) is identical to the 
standard Fcc Bz shown in textbooks. Nevertheless, we have chosen an unusual perspective 
from which to view the Brillouin zone in figure 14. Instead of having the FCC BZ resting 
on one of its diamond-shaped facets as is usually done, we have chosen in figure 14 to 
present it resting on a hexagonal face. Since there is a preferred axis for the atoms, the 
distinctive L points centred in the top and bottom hexagons are three fold symmetry axes, 
and are labelled Lp. The L points centred in the other six hexagons are symmetric only 
under a 360" rotation, and are labelled LI. It is helpful to know that the U3-K3 points are 
equivalent since they are a reciprocal lattice vector apart. Likewise the Ul-K, points are 
equivalent. 

Figure 15 shows the dispersion relations along different meridians for our primary 
experimental sample of normalized hole diameter d /a  = 0.469 and 78% volume fraction 
removed (where a is the unit cube length). The oval points represent experimental data 
with s polarization (I to the plane of incidence, 11 to the slab surface) while the triangular 
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F i p  14. The Brillouin zone of 
an rcc structure incorporating non- 
spherical atoms. as in figure 8(b). 
Since Ihe space lattice is not dis- 
torted. this is simply the standard 
FCC Brillouin zone lying on a hexag- 
OMI face rather than the usual cu- 
bic face. Only the L points on the 
Lop and bottom hexagons are t he -  
fold symmetry ares. Thenfore. they 
are labelled L,. The L points on 
the other six hexagons are labelled 
LI. The u 3 - K ~  points are equivalent 
since they are a reciprocal lattice vec- 
tor apart. Likewise the UI-KI points 
are equivalent. 

Fi- 15. Frequency o versus wavevector k dispersion along the surface 
of the Brillouin zone shown in figure 14. where c/a is the speed of 
light divided by the FCC cube length. The ovals and triangles are the 
experimental points for s and p polarization respectively. The full and 
broken curves are the calculations for s and p polarization nespectively. 
The dark shaded band is the totally forbidden band gap. The lighter 
shaded striper above and below the dark band are forbidden only for s 
and p polarization respectively. 

points represent p polarization (11 to the plane of incidence, partially I to the slab surface). 
The horizontal abscissa in figure 15(b), L~-K~-LI-U~-X-U~-L,, represents a full meridian 
from the north pole to the south pole of the BZ. Along this meridian the Bloch wavefunctions 
separate neatly into s and p polarizations. The s and p polarized theory curves are the full 
and broken curves respectively. The dark shaded band is the totally forbidden photonic 
band gap. The lighter shaded stripes above and below the dark band are forbidden only for 
s and p polarization respectively. 

At a typical semiconductor refractive index, n = 3.6, the 3D forbidden gap width is 19% 
of its centre frequency. Calculations [21] indicate that the gap remains open for refractive 
indices as low as n = 2.1 using circular holes. We have also measured the imaginary 
wavevector dispersion within the forbidden gap. At mid-gap we find an attenuation of 
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10 dB per unit cube length U .  Therefore, the photonic crystal need not be very many layers 
thick to expel effectively the zero-point electromagnetic field. The construction of figure 13 
can be implemented by reactive ion etching as shown in figure 16. In reactive ion etching, 
the projection of circular mask openings at 35” leaves oval holes in the material, which 
might not perform as well. Fortunately it was found [21], defying ‘Murphy’s law’ that the 
forbidden gap width for oval holes is actually improved, fully 21.7% of its centre frequency. 

Figure 16. Construction of the non-spherical void 
photonic crystal of figure 8(b) and figures 13-15 by 
reactive ion etching. 

Figure 17. A one-dimensional Fabry-Perot resonator 
made of multilayer dielectric mirmrs with a space of one 
half-wavelength between the left and right mimrs. The 
net effect is to introduce aqua~ter-wavelength phase slip 
defect into Ihe overall periodic shllcture. A defect mode 
is introduced at mid-gap. 

4. Doping the photonic crystal 

The perfect semiconductor crystal is quite elegant and beautiful, but it becomes ever more 
useful when it is doped. Likewise, the perfect photonic crystal can become of even greater 
value when a defect [22] is introduced. 

Lasers, for example, require that the perfect 3D translational symmetry should be 
broken. Even while spontaneous emission into all 4n steradians should be inhibited, a 
local electromagnetic mode, linked to a defect, is still necessary to accept the stimulated 
emission. In  one-dimensional distributed feedback lasers [23], a quarter-wavelength defect 
is introduced, forming effectively a Fabry-Perot cavity as shown in figure 17. In three- 
dimensional photonic band structure, a local defect-induced structure resembles a Fabry- 
Perot cavity, except that it reflects radiation back upon itself in  all 4n spatial directions. 

The perfect three-dimensional translational symmetry of a photonic crystal can be lifted 
in either one of two ways: (i) Extra dielectric material maybe added to one of the unit 
cells. We find that such a defect behaves very much like a donor atom in a semiconductor. 
It gives rise to donor modes that have their origin at the bottom of the conduction band. 
(ii) Conversely translational symmetry can be broken by removing some dielectric material 
from one of the unit cells. Such defects resemble acceptor atoms in semiconductors. The 
associated acceptor modes have their origin at the top of the valence band. We will find that 
acceptor modes are particularly well suited to act as laser micro-resonator cavities. Indeed, 
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it appears that photonic crystals made of sapphire or other low-loss dielectrics will make 
the highest-Q single-mde cavities (of modal volume - lA3), covering electromagnetic 
frequencies above the useful working range of superconducting metallic cavities. The short- 
wavelength limit in the ultraviolet is set by the availability of optical materials with refractive 
index 2 2, the threshold index [18,21] for the existence of a photonic band gap. 

MMlOPOLE N E N N A S  
I 

ABSORBING PADS 

CRYST& 

Figure 18. A ( I  f 0) cross-sectional view of our Figure 19. Experimental configuration for the detection 
face-centred cubic photonic crystal consisting of non- of local electromagnetic modes in the vicinity of a 
spherical ’air-atoms’ centred on (he dots. Dielectric laltice del&. Transmission amplitude menuation from 
material is represented by the shaded area. The one antenna to the other is measured. At Lhe local mode 
rectangular broken line is a face diagonal cross section frequency the signal hops by means of the local mode 
of the unit cube. Donor defects consisted of a dielectric in the centre of the photonic crystal, producing B local 
sphere centred on an atom. We selected an acceptor transmission p e t .  The signal propagates in the ( I  1 I) 
defect as shown centred in the unit cube. it consists of dimtion through a10 atomic layers. 
a missing horizontal slice in a single vertical rib. 

Figure 18 is (1 io) cross section of our photonic crystal, (of figure 8(6) and figures 13- 
15), cutting through the centre of a unit cube. Shading represents dielectric material. The 
dots are centred on the ‘air-atoms’ and the rectangular broken line is a face-diagonal cross 
section of the unit cube. Since we could design the structure at will, donor defects were 
chosen to consist of a single dielectric sphere centred in an air-atom. Likewise, by breaking 
one of the interconnecting ribs, it is easy to create acceptor modes. We selected an acceptor 
defect as shown in figure 18, centred in the unit cube. It comprises a vertical rib that has a 
missing horizontal slice. 

The heart of our experimental apparatus is a photonic crystal embedded in microwave- 
absorbing pads as shown in figure 19. The photonic crystals were 8-10 crystal layers thick in 
the (1 1 I) direction. Monopole antennae, consisting of 6 mm pins, coupled radiation to the 
defect mode. The HP 8510 Network Analyzer was set up to measure transmission between 
the antennae. Figure 20(a) shows the transmission amplitude in the absence of a defect 
There is very strong attenuation (- between 13 and 16 GHz marking the valence and 
conduction band edges of the forbidden gap. This is a tribute to both the dynamic range of 
the network analyser, and the sizable imaginary wavevector in the forbidden gap. 

A transmission spectrum in the presence of an acceptor defect is shown in figure 20(6). 
Most of the spectrum is unaffected, except at the electromagnetic frequency marked ‘Deep 
acceptor’ within the forbidden gap. At that precise frequency, radiation ‘hops’ from the 
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Figure 20. (a) Transmission attenuation 
through a defect-free photonic crystal, as a 
function of microwave frequency. The for- 
bidden gap falls between 13 and 16 GHz. 
(b)  Attenuation through a photonic crystal 
with a single acceptor in the centre The 
large acceptor defect volume shifted its fre- 
quency n w  mid-gap. The electromagnetic 
resonator Q was - 1000. limited only by Ihe 
loss tangent of the dielectric marerial. (c) 
Anenmion through a photonic crystal with 
a single donor defect. an uncenmd dielectric 
sphere. leading to two shallow doncu modes. 

Fwt~ 21. Donor- and acceptor-mode frequencies as a function 
of nomwlized donor and acceptor defect volume. The poinrs are 
aperimental and the corresponding curves are calculated. Defect 
volume is normalized to (A/&)', where A is the mid-gap vacuum 
wavelength and n is the refractive index. A finite defect volume 
is required to bind a mode in the forbidden gap. 

transmitting antenna to the acceptor mode and then to the receiving antenna The acceptor- 
level frequency, within the forbidden gap, is dependent on the volume of material removed. 
Figure 21 shows the acceptor-level frequency as a function of defect volume removed from 
one unit cell. When a relatively large volume of material is removed, the acceptor level is 
deep, as shown in figure ZO(6). A smaller amount of material removed results in a shallow 
acceptor level, nearer the valence band. If the removed material volume falls below a 
threshold volume, the acceptor level falls within the continuum of levels below the top of 
the valence band, becoming metastable. 

On an expanded frequency scale we can measure the resonator Q of the deep acceptor 
mode, which is Q - IOOO, as limited by the loss tangent of the Emerson & Cumming 
Stycast material of which the photonic crystal was made. 

The behaviour of an off-centre donor defect is shown in figure 20(c). In that case 
the donor volume was only slightly above the required threshold for forming bound donor 
modes. Already two shallow donor modes can be seen in figure 20(c). When the donor is 
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centred in the Wigner-Seitz unit cell, the two modes merge to form a doubly degenerate 
donor level as in figure 21. Single donor defects seem to produce multiple donor levels. 
Figure 21 gives the donor-level frequency as a function of donor volume. As in the case of 
acceptors, there is a threshold defect volume required for the creation of bound modes below 
the conduction band edge. However, the threshold volume for donor defects is almost 10 
times larger than the acceptor threshold volume. Apparently, this is due to the electric field 
concentration in the dielectric ribs at the top of the valence band. Bloch wavefunctions at 
the top of the valence band are rather easily disrupted by the missing rib segment. 

We have chosen in figure 21 to normalize the defect volume to a natural volume of 
the physical system, (h/2n)3. which is basically a cubic half-wavelength in the dielectric 
medium. More specifically, h is the vacuum wavelength at the mid-gap frequency, and n is 
the refractive index of the dielectric medium. Since we are measuring a dielectric volume, it 
makes sense to normalize to a half-wavelength cube as measured at the dielectric refractive 
index. Based on the reasonable scaling of figure 21, our choice of volume normalization 
would seem justified. 

The vertical rib with a missing horizontal slice, as in figure 18, can be readily 
microfabricated. It should he possible to create it in III-V materials by growing an 
aluminium-rich epitaxial layer and lithographically patterning it down to a single dot the size 
of one of the vertical ribs. After regrowth of the original III-V composition and reactive 
ion etching of the photonic crystal, HF acid etching, whose [24] selectivity 10'. will 
be used to remove the Al-rich horizontal slice from the one rib containing such a layer. 
The resonant frequency of the microcavity can be controlled by the thickness of the AI-rich 
sacrificial layer. 

Therefore, by doping the photonic crystal, it is possible to create high-Q electromagnetic 
cavities whose modal volume is less than a half-wavelength cubed. These doped photonic 
crystals would be similar to metallic microwave cavities, except that they would be usable 
at higher frequencies where metal cavity walls would become lossy. Using sapphire as a 
dielectric, for example it should be possible to make a millimetre-wave cavity with Q 2 IO9. 
The idea is not to compete directly with superconducting cavities, but rather to operate at 
higher frequencies, where the superconductors become lossy. Given the requirement for 
refractive index > 2, doped photonic crystals should work well up to ultraviolet wavelengths 
where diamond crystal and Ti02 are still transparent. 

5. Applications 

The forthcoming availability of single-mode microcavities at optical frequencies will lead 
to a new situation in quantum electronics. Of course, microwave cavities containing a 
single electromagnetic mode have been known for a long time. At microwave frequencies, 
however, spontaneous emission of electromagnetic radiation is a weak and unimportant 
process. At optical frequencies, spontaneous emission comes into its own. Now we can 
combine the physics and technology of spontaneous emission with the capability for single- 
mode microcavities at optical frequencies where spontaneous emission is important. This 
combination is fundamentally a new regime in quantum electronics. 

The major example of this new type of device is the singlemode light-emitting diode 
(sM LED), which can have many of the favourable coherence properties of lasers, while 
being a more reliable and threshold-less device. Progress in electromagnetic microcavities 
allows all the spontaneous emission of a LED to be funnelled into a single electromagnetic 
mode. 
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As the interest in low-threshold semiconductor laser diodes has grown, e.g. for optical 
interconnects, its spontaneously luminescent half-brother, the light-emitting diode, has begun 
to re-emerge in a new form. In this new form the LED is surrounded by an optical cavity. 
The idea is for the optical cavity to make available only a single electromagnetic mode for 
the output spontaneous emission from the semiconductor diode. In fact the figure-of-merit 
for such a cavity is j3. the fraction of spontaneous emission that is being funnelled into the 
desired mode. What is new for this application is the prospective ability to make high$ 
cavities at optical frequencies employing photonic crystals. The three-dimensional character 
of the cavities ensures that spontaneous emission will not seek out those neglected modes 
which are found propagating in a direction away from the optical confinement. 

With all the spontaneous emission funnelled into a single optical mode, the SM LED 
can begin to have many of the coherence and statistical properties normally associated 
with above-threshold lasing. The essential point is that the spontaneous emission factor #I 
should approach unity. (A closely related concept is that of the ‘zero-threshold laser’, in 
which the high spontaneous emission factor produces a very soft and indistinct threshold 
characteristic in the light output versus current input curve of laser diodes.) The idea is to 
combine the advantages of the LED, which is threshold-less and highly reliable with those 
of the semiconductor laser, which is coherent and very efficient. 

Figure 22. An illusmtion of the proper- 
ties of the single-mode light-emitting diode 
(SM LED), whose cavity is represented by the 

crystal, af left. Tho words ’monochmmic’ 
and ’directional’ represent the lemporal and 
spatial coherence of the SM LED output as 
explained in the text. The modulation speed 
can be > I O  GHz md the differential qum- 
lum efficiency can be > SO%, competitive 

squeezed with laser diodes. But there is no Ihresh- 
old current for the SM LED a5 indicated in 
the L versus I curves at the bottom. The 
regulp seeam of photcelmns, e. is mat 
to represent photon-number-state squeezing, 
which can be produced by the SM LED if the 
spontmeous emission factor p of the cavity 

Single-Mode Light-Emitting-Diode 

modulalion small circle inside the rectangular photonic 9 speed>lOGHz htonochmmallc 

Directions1 
photon 

numbwstale 

I)))), ll 1 A 4 4 ~ 

Light 

Ilh Current is high enough. 

The coherence properties of the SM LED are illustrated in figure 22. In a laser, single- 
mode emission is the result of gain saturation and mode competition. In the SM LED, there is 
no gain and therefore no gain saturation, but the output is still single-mode, because only one 
mode i s  available for emission. Since a single spatial mode can always be mode-converted 
into a plane wave, the SM LED can be regarded as having spatial coherence. 

What about temporal coherence? The spectral linewidth of the SM LED is narrower 
than the luminescence band of the semiconductor. All the radiation is funnelled into the 
narrow spectral band determined by the microcavity Q. Thus SM LED have both spatial and 
temporal coherence as represented by words ‘directional’ and ‘monochromatic’ in figure 22. 

What about the modulation speed of SM Lu) in comparison to laser diodes under direct- 
current modulation? Generally, the modulation speed depends on the carrier lifetime. 
Since electron-hole pairs in laser diodes experience both spontaneous and simulated 
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recombination, they have an advantage. However, singlemode cavities concentrate zero- 
point electric field fluctuations into a smaller volume, creating a stronger matrix element 
for spontaneous emission. Detailed calculations indicate that spontaneous emission can be 
speeded up by a factor ... 10 due to this cavity quantum-electrodynamic (QED) effect. On 
figure 22 we indicate that a modulation speed > IO GHz should be possible for SM LED. 

The same cavity QED effects can enhance the spontaneous emission efficiency of SM 
LED since the radiative rate can then compete more successfully with non-radiative rates. 
External efficiency should exceed 50%, but this can come most easily from intelligent LED 
design [25] rather than cavity QED effects. 

Shown at the bottom of figure 22 is the light output versus current input curve of SM 
LED and laser diodes. An SM LED can compete with a laser diode in terms of differential 
external efficiency, but the SM LED can have the advantage by not demanding any threshold 
current. Lack of threshold behaviour makes the output power and the operating wavelength 
of an SM LED relatively insensitive to ambient temperature. Combined with the inherent 
reliability of a LED, this should produce many systems advantages for the SM LED concept. 

The final SM LED property illustrated in figure 22 is photon-number-state squeezing, 
as suggested by the regular sequence of photoelectrons on the horizontal line. Stimulated 
emission is wf required for these exotic squeezing effects. The critical variable is absolute 
quantum efficiency. If the quantum efficiency of the SM LED is high, then these useful 
correlations will exist in the spontaneous output of the single-mode LED. This requires, most 
of all, a high spontaneous emission factor ,9, our overall figure-of-merit for microcavities. 

There are many other applications for photonic crystals, particularly in the microwave 
and millimetre-wave regime. They are very imaginative, and they have gone far beyond 
OUT initial goals for using photonic crystals in quantum optics. 

6. Conclusion 

It is worth while to summarize the similarities and the differences between photonic band 
structure (PBS) and electronic band structure (EBS). This is best done by reference to table 1. 

Table 1. A summary of the differences and similarities between photonic bMd structure Md 
electronic band structure, 

Electronic Photonic 
band structure band structure 

Underlying 
dispersion parabolic linear 
relalion 

Angular spin In spin I 
momentum scalar wave vector wave 

approxidon character 

Accuracy approximate 
of due to essentially 
band electron4ectmn exact 
theorv interactions 

Electrons are massive, and so the underlying dispersion relation for electrons in crystals 
is parabolic. Photons have no mass, so the underlying dispersion relation is linear. But as 
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a resuIt of the periodicity, the photons develop an effective mass in PBS, and this should 
come as very little surprise. 

Electrons have spin In, but frequently this is ignored, and Schrodinger's equation is 
treated in a scalar wave approximation. In electronic band theory the spin 1/2 is occasionally 
important, however. In contrast photons have spin 1, but it is generally never a good 
approximation to neglect polarization in PBS calculations. 

Finally, we come to the accuracy of band theory. It is sometimes believed that band 
theory is always a good approximation in electronic structure. This is not really true. When 
there are strong correlations, as in the high-T, superconductors, band theory is not even a 
good zeroth-order approximation. Photons are highly non-interacting, so, if anything, band 
theory makes more sense for photons than for electrons. 

The final point to make about photonic crystals is that they are very empty structures, 
consisting of about 78% empty space. But in a sense they are much emptier than that. 
They are emptier and quieter than even the vacuum, since they contain not even zero-point 
fluctuations within the forbidden frequency band. 
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