https://repository.tudelft.nl/islandora/object/uuid:be8cbe0a-28ec-4bd9-8ad0-648de04649b8? collection=education

MARINE NH3

APPENDIX (THESIS)

Safe and effective application of ammonia as a marine fuel

Project number: 16.104 Doc. number: 999-003 Revision: B Status: GOOD FOR USE Date: 2019-05-29

©€C	CREATIVE COMMONS LICENSE, ATTRIBUTION ALONE, BY N. DE VRIES AT C-JOB.						
REV	Description of change	Date	Aut.	Chk.	App.		
0	FIRST ISSUE (CONCEPT 1)	2019-04-24	NDV	PL	WZ		
А	GENERAL UPDATE (GREEN LIGHT)	2019-05-10	NDV	PL	WZ		
В	GENERAL UPDATE (FINAL)	2019-05-29	NDV	PL	WZ		

Table of contents

Appendix A: Renewable Fuel Synthetic Production Cost [MJ/MJ]	4
Appendix B: Ammonia Combustion	6
Appendix C: Hydrogen Combustion	7
Appendix D: Reference Vessels	8
Appendix E: Power Density ICE (Natural Gas, Dual Fuel)	12
Appendix F: NOx Emissions Small Diesel Engines	13
Appendix G: Heat Balance ICE	14
Appendix H: Less Income Calculation	17
Appendix I: Power Density PEMFC	18
Appendix J: Ammonia Flow Burner, Evaporator and Cracker PEMFC	19
Appendix K: Power Density AFC	22
Appendix L: Ammonia Flow Evaporator AFC	23
Appendix M: Power Density SOFC	24
Appendix N: Ammonia Flow Evaporator SOFC	25
Appendix O: Power Density ICE (Conventional)	26
Appendix P: Cost Calculation 6K & 18K ton DWT	27
Appendix Q: Diagram NH3 Fuel System (Technical Basis)	34
Appendix R: Failure Modes Risk Assessment 1	37
Appendix S: Risk Assessment 1	39
Appendix T: Diagram NH3 Fuel System (2x 100%)	48
Appendix U: Diagram NH3 Fuel System (2x 50%)	51
Appendix V: Failure Modes Risk Assessment 2	54
Appendix W: Risk Assessment 2	57

APPENDIX A: RENEWABLE FUEL SYNTHETIC PRODUCTION COST [MJ/MJ]

Energy demand calculation:

	Liquid Methane CH4	Ethanol C2H5OH	Methanol CH3OH	Liquid Ammonia NH3	Liquid Ammonia NH3	Liquid Hydrogen H2	Compressed Hydrogen H2
Storage temperature [°C]	-164	20	20	-34	20	-253	20
Storage pressure [bar]	1	1	1	1	10	1	700
Energy [MJ]	1000	1000	1000	1000	1000	1000	1000
Energy density (LHV) [MJ/kg]	50.0	26.7	19.9	18.6	18.6	120.0	120.0
Mass [kg]	20.0	37.5	50.3	53.8	53.8	8.3	8.3
Density [kg/m3]	468	789	792	682	682	71	63
Volume [m3]	0.04	0.05	0.06	0.08	0.08	0.12	0.13
Nitrogen [kg-nitrogen] (*1)				44.2	44.2		
Air separation [MJ/kg-nitrogen]				0.2 [1]	0.2		
Air separation [MJ]				9.7	9.7		
Air separation [MJ/MJ]				9.7E-3	9.7E-3		
Carbon [kg-carbon] (*2)	15.0	19.5	26.2				
CO2 [kg-CO2] (*3)	54.9	71.6	96.0				
Air separation [MJ/kg-CO2]	6.6 [1]	6.6	6.6				
Air separation [MJ]	362.1	472.3	633.7				
Air separation [MJ/MJ]	0.36	0.47	0.63				
Hydrogen [kg-hydrogen] (*4)	10.1	9.8	9.5	9.5	9.5	8.3	8.3
Water [kg-water] (*5)	89.8	87.9	84.8	85.3	85.3	74.5	74.5
Water cleaning [MJ/kg-water]	6.5E-3 [1]	6.5E-3	6.5E-3	6.5E-3	6.5E-3	6.5E-3	6.5E-3
Water cleaning [MJ]	0.6	0.6	0.6	0.6	0.6	0.5	0.5
Water cleaning [MJ/MJ]	5.8E-4	5.7E-4	5.5E-4	5.5E-4	5.5E-4	4.8E-4	4.8E-4
Hydrogen [kg-hydrogen] (*4)	10.1	9.8	9.5	9.5	9.5	8.3	8.3
Water splitting	180.7	180.7	180.7	180.7	180.7	180.7	180.7
[MJ/kg-hydrogen]	[1]						
Water splitting [MJ]	1817	1777	1714	1725	1725	1506	1506
Water splitting [MJ/MJ]	1.82	1.78	1.71	1.72	1.72	1.51	1.51
Synthesis [MJ/kg-fuel]	1.2 [1]	36.9 [2]	4.8 [1]	1.6 [1]	1.6		
Synthesis [MJ]	24	1382	241	86	86		
Synthesis [MJ/MJ]	0.02	1.38	0.24	0.09	0.09		
Compression/Cooling	5.00			0.01		40.00	17.04
[MJ/kg-fuel]	[3]			[1]		[1]	[4]
Compression/Cooling [MJ]	100.0			0.5		333.3	142.0
Compression/Cooling [MJ/MJ]	0.10			5.4E-4		0.33	0.14
Total [MJ]	2303	3632	2589	1822	1821	1840	1648
Total [MJ/MJ]	2.30	3.63	2.59	1.82	1.82	1.84	1.65

- [1] S. Crolius, O. Elishav, "N-Fuels vs. C-Fuels: Nitrogen "superior" to carbon as a hydrogen carrier," Ammonia Energy & Technion Israel Institute of Technology, 16 November 2017. [Online]. Available: http://www.ammoniaenergy.org/n-fuels-vs-c-fuels-nitrogen-superior-to-carbon-as-ahydrogen-carrier/. [Geopend 9 April 2018].
- [2] Y. El Fouih and C. Bouallou, "Recycling of carbon dioxide to produce ethanol," Elsevier (MINES ParisTech, Centre Energétique et Procédés), Paris, 2013.
- [3] PetroWiki, "Liquified natural gas (LNG)," PetroWiki, 15 January 2018. [Online]. Available: https://petrowiki.org/Liquified_natural_gas_(LNG)#cite_ref-r5_5-1. [Geopend 9 April 2018].
- [4] S.S. Makridis, "Hydrogen storage and compression," Department of Mechanical Engineering, University of Western Macedonia, Kozani, 2016.

			Mass %	Mass %	Mass %	Mass %
Туре	Atom	g/mol	Hydrogen	Nitrogen	Carbon	Oxygen
Hydrogen	Н	1.0079	100%			
Nitrogen	Ν	14.0067		100%		
Carbon	С	12.0107			100%	
Oxygen	0	15.9994				100%
Carbon dioxide	CO2	44.0095			27.29%	72.71%
Water	H2O	18.0153	11.19%			88.81%
Methane	CH4	16.0425	25.13%		74.87%	
Ethanol	C2H5OH	46.0684	13.13%		52.14%	34.73%
Methanol	CH3OH	32.0419	12.58%		37.48%	49.93%
Ammonia	NH3	17.0306	17.76%	82.24%		
Hydrogen	H2	2.0159	100.00%			

Chemical data:

Hydrogen utilization factor:

Methane	$CO_2 + 4H_2 \rightarrow CH_4 + H_2O$	50%
Ethanol	$2CO_2 + 6H_2 \rightarrow C_2H_5OH + 3H_2O$	50%
Methanol	$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$	67%
Ammonia	$N_2 + 3H_2 \rightarrow 2NH_3$	100%

(*1): Nitrogen mass calculated by multiplying total mass with nitrogen percentage given in chemical data table.

(*2): Carbon mass calculated by multiplying total mass with carbon percentage given in chemical data table.

(*3): Carbon dioxide mass calculated by dividing carbon mass by carbon mass percentage given in chemical data table. (Oxygen demand covered with carbon dioxide supply as carbon demand is greater or equal to oxygen demand. Furthermore, carbon dioxide supply provides 2 oxygen atoms and 1 carbon atom. Thus, carbon is dominant)

(*4): Hydrogen mass calculated by multiplying total mass with hydrogen percentage, given in chemical data table, and dividing it by hydrogen utilization factor.

(*5): Water mass calculated by dividing hydrogen mass with hydrogen percentage given in chemical data table.

TUDelft UC-JOB

APPENDIX B: AMMONIA COMBUSTION

Туре	-	Moles	Molecule	Phase	Enthalpy of formation [kJ/mol]	Enthalpy of formation [kJ]
Reactant	$\Delta H_{\rm f}$	4	NH₃	Gas	-45.9	-183.6
Reactant	$\Delta H_{\rm f}$	3	O ₂	Gas	0.0	0.0
Product	$\Delta H_{\rm f}$	2	N ₂	Gas	0.0	0.0
Product	$\Delta H_{\rm f}$	6	H ₂ O	Gas	-241.8	-1,450.9
	$\Delta H_{\rm r}$					-1,267.3

 $4NH_3 + 3O_2 \rightarrow 2N_2 + 6H_2O$

$$\Delta H_r = \sum H_f (products) - \sum H_f (reactants)$$

 Δ Hr: -1,267.3 kJ Needed Δ Hr: 1,267.3 kJ Released

NH₃: 17.0305 g/mol 4NH₃: 68.1221 g

NH₃: 18,603 kJ/kg

Lower Heating Value (LHV)

 $4NH_3 + 11N_2 + 3O_2 \rightarrow 13N_2 + 6H_2O$

Stoichiometric combustion of 1 kg ammonia

Moles	Molecule	Mass [kg]	Specific heat [kJ/kg·K] (at 2000K)	ΔT Temperature [K]
13	N ₂	5.35	1.28	1,637
6	H ₂ O	1.59	2.84	

Start T: 293 K ΔT: 1,637 K End: 1,930 K

Check simplified conservative approach of calculation: 2,000 > 1,930

APPENDIX C: HYDROGEN COMBUSTION

$$2H_2 + O_2 \rightarrow 2H_2O$$

Туре	-	Moles	Molecule	Phase	Enthalpy of formation [kJ/mol]	Enthalpy of formation [kJ]
Reactant	$\Delta H_{\rm f}$	2	H ₂	Gas	0.0	0.0
Reactant	$\Delta H_{\rm f}$	1	O ₂	Gas	0.0	0.0
Product	$\Delta H_{\rm f}$	2	H_2O	Gas	-241.8	-483.6
	$\Delta H_{\rm r}$					-483.6

$$\Delta H_r = \sum H_f (products) - \sum H_f (reactants)$$

 $\Delta Hr:$ -483.6 kJ Needed $\Delta Hr:$ 483.6 kJ Released

H₂: 2.0159 g/mol H₂: 4.0318 g

H₂: 119,957 kJ/kg

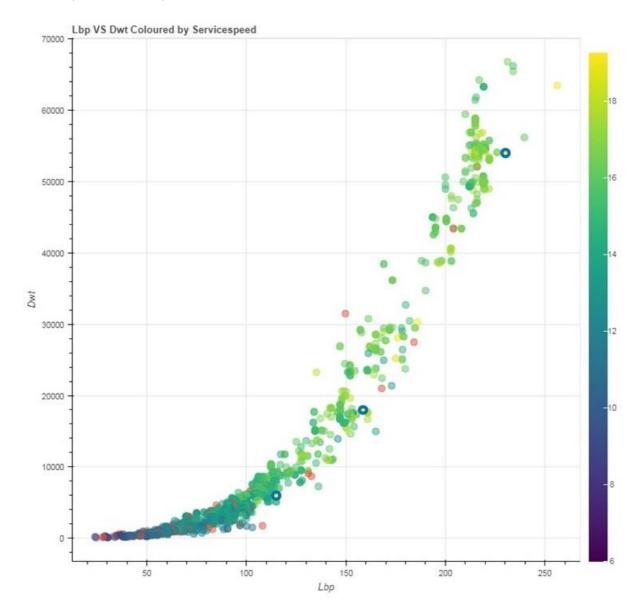
Lower Heating Value (LHV)

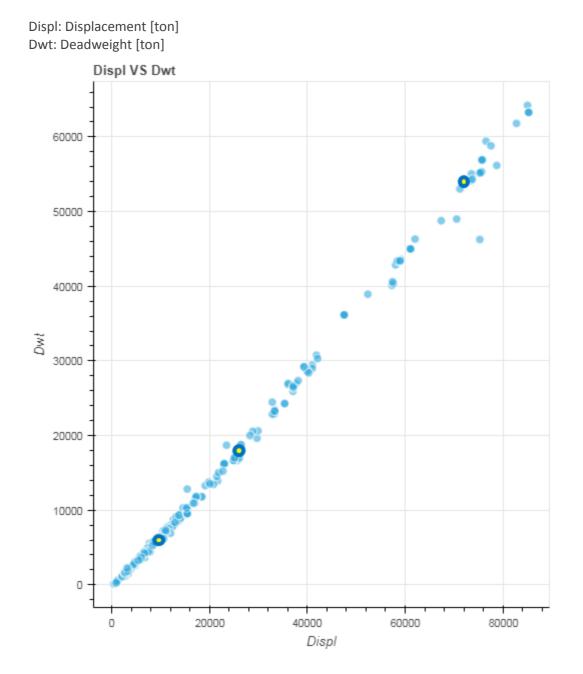
 $2H_2 + 4N_2 + O_2 \rightarrow 4N_2 + 2H_2O$

Stoichiometric combustion of 1 kg hydrogen

Moles	Molecule	Mass [kg]	Specific heat [kJ/kg·K] (at 2,300K)	ΔT Temperature [K]
4	N ₂	27.79	1.30	1,924
2	H ₂ O	8.94	2.93	

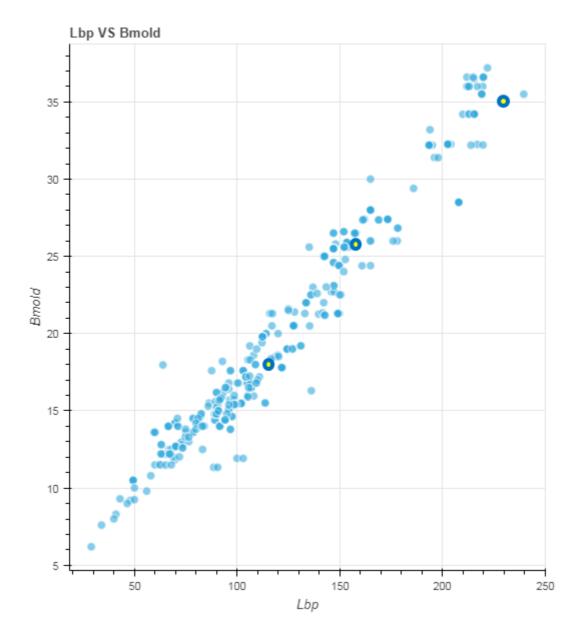
Start T: 293 K ΔT: 1,924 K End: 2,217 K

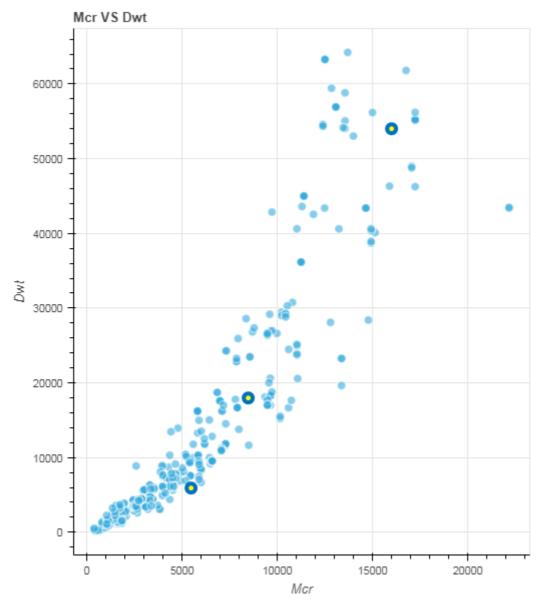

Check simplified conservative approach of calculation: 2,300 > 2,217


APPENDIX D: REFERENCE VESSELS

Summary of reference vessels, LPG tankers/ammonia carriers

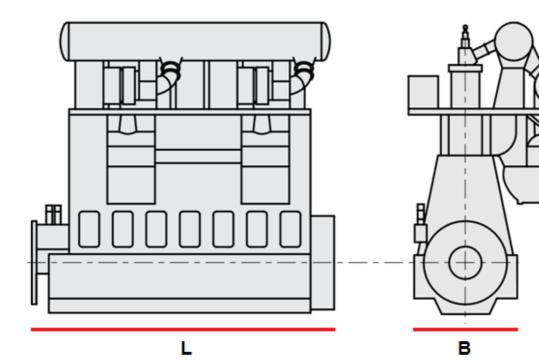
Lbp: Length between perpendiculars [m] Dwt: Deadweight [ton] Servicespeed: Service speed [kts]





Lbp: Length between perpendiculars [m] Bmold: Breadth moulded [m]

Mcr: Maximum continuous rating [kW] Dwt: Deadweight [ton]



APPENDIX E: POWER DENSITY ICE (NATURAL GAS, DUAL FUEL)

Power density: Internal combustion engine (natural gas, dual fuel)

Reference: WinGD X62DF – 6 cylinders 14,310 kW

Η

TUDelft UC-JOB

Example figure for definition of measurements only.

L [m]: 9.776 B [m]: 4.200 H [m]: 11.860 Mass [ton]: 377

Power density [kW/ton]: 38 Volumetric power density [kW/m3]: 29

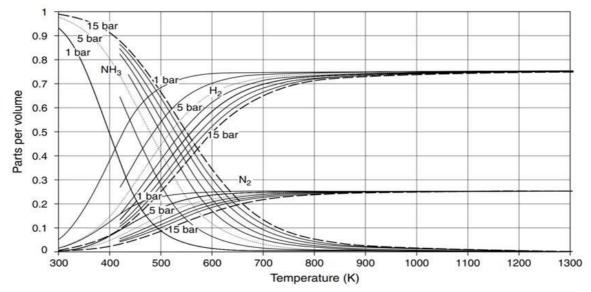
APPENDIX F: NOX EMISSIONS SMALL DIESEL ENGINES

Approximation of NOx emissions of small diesel engines/diesel-cars:

Refence car used for conversion of g/km to g/kWh: BMW 3 series (E90), 320D

Courtesy of BMW AG / Autoweek.nl

Distance [km]	1.0
Consumption [l/100 km]	5.7
Fuel volume [dm3]	0.057
Fuel density [kg/m3]	0.846
Fuel mass [kg]	0.048
Fuel lower heating value [MJ/kg]	42.6
Energy in [MJ/km]	2.05
Energy in [kWh/km]	0.57
Eta engine	0.30
Energy out [kWh/km]	0.17
*NOx [g/km]	1.2-1.7
NOx [g/kWh]	7.0-9.9


*As per reference in thesis report to TNO report.

APPENDIX G: HEAT BALANCE ICE

Calculation of heat demand evaporator and cracker, internal combustion engine at 100% power:

			Assumptions/reference:
1 - Exhaust gas temperature			
Engine power	14,310	[kW]	Ship 54,000 ton DWT
Engine efficiency	0.50	[-]	Ammonia hydrogen mixture
Energy consumption	28,620	[kW]	
Ammonia flow	21,751	[kJ/s]	70%v = 76%e = 95%m
Hydrogen flow	6,869	[kJ/s]	30%v = 24%e = 5%m
Ammonia mass flow	1.169	[kg/s]	
Hydrogen mass flow	0.057	[kg/s]	
Ammonia stoichiometric air mass flow	6.1	[kg/kg]	
Hydrogen stoichiometric air mass flow	34.3	[kg/kg]	
Air excess ratio	2.0		Assumed to be sufficient for complete and correct combustion
Air mass flow	18.19	[kg/s]	
Total mass flow	19.42	[kg/s]	
Mass flow exhaust gas	19.42	[kg/s]	
Mass flow excess air	9.10	[kg/s]	
Mass flow water vapour (ammonia)	1.86	[kg/s]	
Mass flow water vapour (hydrogen)	0.51	[kg/s]	
Mass flow nitrogen (ammonia)	6.25	[kg/s]	
Mass flow nitrogen (hydrogen)	1.59	[kg/s]	
Check - Mass flow exhaust gas	19.31	[kg/s]	Minor difference due to simplification of air (nitrogen and oxygen only)
Composition exhaust gas			
Air	47%	[-]	
Water vapour	12%	[-]	
Nitrogen	41%	[-]	
Specific heat			Conservative simplified approach cp: 700K
Air	1.075	[kJ/kg K]	Engineeringtoolbox.com
Water vapour	2.080	[kJ/kg K]	Engineeringtoolbox.com
Nitrogen	1.098	[kJ/kg K]	Engineeringtoolbox.com
Specific heat exhaust gas	1.208	[kJ/kg K]	
Exhaust gas heat availability	8,586	[kW]	30% Energy consumption [P.van Maanen, Scheepsdieselmotoren]
Start Temperature fuel and air mixture	298	[K]	
Delta Temperature exhaust gas	368	[K]	$\Delta T = \frac{Q}{m \cdot c_p}$
Temperature exhaust gas	666	[K]	
Temperature exhaust gas	393	[°C]	

2 -Ammonia vapourization			
Demand			
Direct ammonia flow	1.169	[kg/s]	
Direct hydrogen flow	0.057	[kg/s]	
Indirect ammonia flow	0.322	[kg/s]	
Total ammonia flow	1.492	[kg/s]	
<u>Supply</u>			
			0.06 kg/h per ton ammonia
Boil-off	0.895	[kg/s]	Proton Ventures guideline
			Conservative approach, boil-off assumed 0 for
Additional (to be vapourized)	1.492	[kg/s]	worst case: sailing back with only fuel
Ammonia heat of evaporation	1,372	[kJ/kg]	Engineeringtoolbox.com
Exhaust heat consumption	2,047	[kW]	

Ammonia crackers V. Hacker and K. Kordesch Volume 3 Part 2 pp 121-127, John Wiley & Sons, Ltd, Chichester, 2003

TUDelft UC-JOB

3 - Ammonia cracking				1 bar 500K (91% effective)
				Indirect flow + 10% of indirect flow from
Input cracker ammonia flow	0.3	55	[kg/s]	direct flow
Temperature increase				
Start Temperature ammonia flow	/ 2	39	[K]	
End Temperature ammonia flow	5	00	[K]	Check: Lower than exhaust gas temperature
Delta Temerature ammonia flow	2	61	[K]	
Specific heat ammonia gas	2.4	.83	[kJ/kg K]	Conservative simplified approach cp: 500K Engineeringtoolbox.com
Exhaust heat consumption part 1	2		[kW]	
Cracking				
Heat demand cracking ammonia Exhaust heat consumption part 2			[kJ/kg] [kW]	Derived from enthalpy of formation, Engineeringtoolbox.com
Total				
Exhaust heat consumption	1,1	86	[kW]	
4 - Balance				
Supply				
Exhaust gas heat supply	8,586	[kV	V]	
Demand				
Exhaust gas heat vapourization	2,047	[kV	V]	
Exhaust gas heat cracking	1,186	[kV	V]	
Remainder				
Exhaust gas heat remainder	5,354	[kV	V] Consid	lered sufficient to account for heat losses

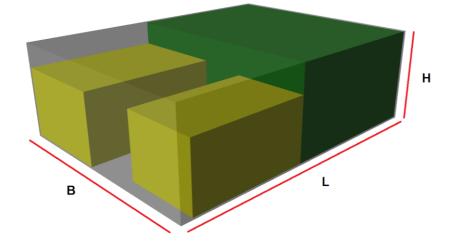
APPENDIX H: LESS INCOME CALCULATION

Less income calculation:

Case

Single trip	5,000	[nm]
Retour (Autonomy)	10,000	[nm]
Speed	16	[kts]
Duration retour	625	[hours]
DWT	54,000	[ton]

		Base		N	-13	
		Conventional	ICE	PEMFC	AFC	SOFC
Operational point						
(average)	[kW]	12,942	12,280	13,398	13,122	13,122
Output	[kWh]	8,088,750	7,675,000	8,373,750	8,201,250	8,201,250
Output	[MJ]	29,119,500	27,630,000	30,145,500	29,524,500	29,524,500
Eta	[-]	50%	51.6%	50.7%	50%	60%
LHV fuel	[MJ/ton]	40,000	18,600	18,600	18,600	18,600
Fuel mass	[ton]	1,456	2,879	3,197	3,175	2,646
Fuel margin	[-]	10%	10%	10%	10%	10%
DWT fuel	[ton]	1,602	3,167	3,516	3,492	2,910
DWT other	[ton]	300	300	300	300	300
DWT cargo	[ton]	52,098	50,533	50,184	50,208	50,790


1 year	Conventional	ICE	PEMFC	AFC	SOFC
OPEX fuel	€7,571,000				
OPEX fuel total part	25%				
OPEX total	€30,284,000				
ΔOPEX (excl: less income)	€8,236,538				
OPEX base	€22,047,462				
OPEX total/DWT cargo per ton	€581				
Less cargo [ton]	-	1,565	1,915	1,891	1,309
Less income	€-	€909,801	€1,113,040	€1,089,960	€760,639

TUDelft

APPENDIX I: POWER DENSITY PEMFC

Power density: PEMFC

Reference: Ballard FCveloCity-HD100 100 kW

	Fuel cell module	Coolant subsystem	Air subsystem
L [m]:	0.869	0.737	0.676
B [m]:	1.200	0.529	0.418
H [m]:	0.506	0.379	0.352
Mass [kg]:	285	44	61

PEMFC (added margin 5mm each side) L [m]: 1.616 B [m]: 1.210 H [m]: 0.516 Mass [ton]: 0.390

Power density [kW/ton]: 256 Volumetric power density [kW/m3]: 99

APPENDIX J: AMMONIA FLOW BURNER, EVAPORATOR AND CRACKER PEMFC

Calculation of burner demand at operational design point PEMFC:

			Assumpt	tions/source:
1 - Fuel demand				
PEMFC power	13,398	[kW]	Ship 54,	000 ton DWT
PEMFC efficiency	0.55	[-]	Hydroge	n
Energy consumption	24,360	[kW]		
Hydrogen flow	24,360	[kJ/s]		
Hydrogen mass flow	0.203	[kg/s]		
Ammonia fuel mass flow	1.143	[kg/s]		
2 - Ammonia cracking				
Ammonia fuel flow		1.143	[kg/s]	
Temperature increase				
Start Temperature ammonia	a flow	239	[K]	
End Temperature ammonia flow		700	[K]	
Delta Temerature ammonia	flow	461	[K]	
Specific heat ammonia gas		2.937	[kJ/kg K]	Conservative simplified approach cp: 700K Engineeringtoolbox.com
Burner consumption part 1		1,548	[kW]	
Cracking				
Heat demand cracking ammonia		2,695	[kJ/kg]	Derived from enthalpy of formation, Engineeringtoolbox.com
Burner consumption part 2		3,081	[kW]	Minor difference with 3,093 kW due to rounding up calculation figures
<u>Total</u>				
Burner consumption total		4,629	[kW]	

3 - Burner			
Demand			
Burner demand	4,629	[kW]	
Burner effectiveness	0.90	[-]	10% heat loss
Ammonia burner flow	5,144	[kW]	
Ammonia burner flow	0.277	[kg/s]	

TUDelft UC-JOB

Calculation of evaporator and cracker flow, PEMFC at 100% power:

			Assumptions/source:
1 - Fuel demand			
PEMFC power	15,000	[kW]	Ship 54.000 ton DWT
PEMFC efficiency	0.55	[-]	Hydrogen
Energy consumption	27,273	[kW]	
Hydrogen flow	27,273	[kJ/s]	
Hydrogen mass flow	0.227	[kg/s]	
Ammonia fuel mass flow	1.280	[kg/s]	

Ammonia crackers V. Hacker and K. Kordesch Volume 3 Part 2 pp 121-127, John Wiley & Sons, Ltd, Chichester, 2003

2 - Ammonia cracking			
Ammonia fuel flow	1.280	[kg/s]	
Temperature increase			
Start Temperature ammonia flow	239	[K]	
End Temperature ammonia flow	700	[K]	
Delta Temerature ammonia flow	461	[K]	
			Conservative simplified approach cp: 700K
Specific heat ammonia gas	2.937	[kJ/kg K]	Engineeringtoolbox.com
Burner consumption part 1	1,733	[kW]	
Cracking			
			Derived from enthalpy of formation,
Heat demand cracking ammonia	2,695	[kJ/kg]	Engineeringtoolbox.com
Burner consumption part 2	3,450	[kW]	
Total			
Burner consumption total	5,183	[kW]	

3 - Burner			
Demand			
Burner demand	5,183	[kW]	
Burner effectiveness	0.90	[-]	10% heat loss
Ammonia burner flow	5,759	[kW]	
Ammonia burner flow	0.310	[kg/s]	

4 -Ammonia vapourization			
Demand			
Ammonia fuel flow	1.280	[kg/s]	
Ammonia burner flow	0.310	[kg/s]	
Total ammonia flow	1.590	[kg/s]	
<u>Supply</u>			
			0.06 kg/h per ton ammonia
Boil-off	0.895	[kg/s]	Proton Ventures guideline
			Conservative approach, boil-off assumed 0 for
Additional (to be vapourized)	1.590	[kg/s]	worst case: sailing back with only fuel

APPENDIX K: POWER DENSITY AFC

Power density: AFC

Reference: GenCell A5 4 kW (fuel cell generator only)

Box measurement estimations: L [m]: 1.200 B [m]: 0.600 H [m]: 1.000 Mass [ton]: 0.500

Power density [kW/ton]: 8 Volumetric power density [kW/m3]: 4

APPENDIX L: AMMONIA FLOW EVAPORATOR AFC

Calculation of evaporator and cracker flow, AFC at 100% power:

			Assumptions/source:
1 - Fuel demand			
AFC power	15,000	[kW]	Ship 54,000 ton DWT
AFC efficiency	0.50	[-]	Ammonia
Energy consumption	30,000	[kW]	
Ammonia mass flow	1.613	[kg/s]	

2 -Ammonia vapourization			
Demand			
Ammonia flow	1.613	[kg/s]	
Supply			
			0.06 kg/h per ton ammonia
Boil-off	0.895	[kg/s]	Proton Ventures guideline
			Conservative approach, boil-off assumed 0 for
Additional (to be vapourized)	1.613	[kg/s]	worst case: sailing back with only fuel

APPENDIX M: POWER DENSITY SOFC

Power density: SOFC

Reference: SOLIDpower BlueGEN 1.50 kW (AC), 1.67 kW (DC)

Box measurements: L [m]: 0.660 B [m]: 0.600 H [m]: 1.010 Mass [ton]: 0.195

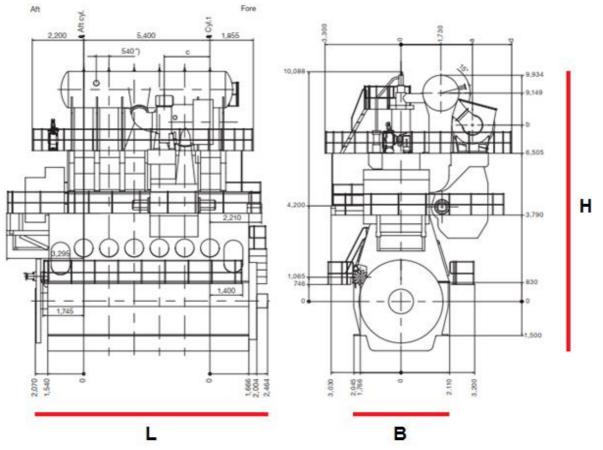
Assumed 50% covers fuel cell module, air subsystem and cooling subsystem as discussed in thesis report.

Power density [kW/ton]: 17 Volumetric power density [kW/m3]: 8

APPENDIX N: AMMONIA FLOW EVAPORATOR SOFC

Calculation of evaporator flow, SOFC at 100%:

			Assumptions/source:
1 - Fuel demand			
SOFC power	15,000	[kW]	Ship 54,000 ton DWT
SOFC efficiency	0.60	[-]	Ammonia
Energy consumption	25,000	[kW]	
Ammonia mass flow	1.344	[kg/s]	
2 - Ammonia vapourization			


Demand			
Ammonia flow	1.344	[kg/s]	
Supply			
			0.06 kg/h per ton ammonia
Boil-off	0.895	[kg/s]	Proton Ventures guideline
			Conservative approach, boil-off assumed 0 for
Additional (to be vapourized)	1.344	[kg/s]	worst case: sailing back with only fuel

APPENDIX O: POWER DENSITY ICE (CONVENTIONAL)

Power density: Internal combustion engine (conventional)

Reference: MAN G60ME – 6 cylinders 16,080 kW

Example figure for definition of measurements only.

L [m]: 9.934 B [m]: 4.155 H [m]: 12.257 Mass [ton]: 453

Power density [kW/ton]: 35 Volumetric power density [kW/m3]: 32 TUDelft

APPENDIX P: COST CALCULATION 6K & 18K TON DWT

Cost calculations 6,000 ton DWT:

General data: ICE (NH3) & Conventional

	[kWe]	[kW]
Main engine		5,500
Engine margin 10%		5,377
Engine margin 15%		5,693
Operational point		4,839
Proppeller shaft		4,500
Hotel	130	147
Re-liq.	0	0
Main engine support	170	192

Main engine running time	6500	[h]
Main engine output	31,455,882	[kWh]
Main engine output	113,241,176	[MJ]
Ammonia	11,799	[ton]
OR		
Low sulphur 0.5% HFO	5,662	[ton]

TUDelft

Less income:				
Case				
Single trip	2,000	[nm]		
Retour (Autonomy)	4,000	[nm]		
Speed	14	[kts]		
Duration retour	286	[hours]		
DWT	6,000	[ton]		

		Base	NH3	
		Conventional	ICE	
Operational point				
(average)	[kW]	4,839	4,839	
Output	[kWh]	1,382,571	1,382,571	
Output	[MJ]	4,997,257	4,997,257	
Eta	[-]	50.0%	51.6%	
LHV fuel	[MJ/ton]	40,000	18,600	
Fuel mass	[ton]	249	519	
Fuel margin	[-]	10%	10%	
DWT fuel	[ton]	274	570	
DWT other	[ton]	100	100	
DWT cargo	[ton]	5,626	5,330	

1 year	Conventional	ICE
OPEX fuel	€2,831,029	
OPEX fuel total part	25%	
OPEX total	€11,324,116	
ΔOPEX (excl: less income)	€3,074,765	
OPEX base	€8,249,351	
OPEX total/DWT cargo per ton	€2,013	
Less cargo [ton]	-	297
Less income	€-	€597,185

ΔCAPEX: Scenario 1				
	ICE (NH3) Convention			
Main engine	€2,200,000	€2,200,000		
Cracker	€1,502,795	€-		
Evaporator	€1,166,108	€-		
DeNOx	€220,000	€220,000		
ΔСΑΡΕΧ	€5,088,903	€2,420,000		

ΔOPEX (1 year): Scenario 1

	ICE (NH3)	Conventional
Main engine	€55,000	€55,000
Cracker	€15,028	€-
Evaporator	€11,661	€-
Fuel	€10,029,070	€2,831,029
DeNOx	€188,735	€188,735
Less income	€597,185	€-
ΔΟΡΕΧ	€10,896,679	€3,074,765

ΔCAPEX: Scenario 4 (400 €/ton NH3 & 100 €/ton CO2)

	ICE (NH3)	Conventional		
Main engine	€2,200,000	€2,200,000		
Cracker	€1,502,795	€-		
Evaporator	€1,166,108	€-		
DeNOx	€220,000	€220,000		
ΔСΑΡΕΧ	€5,088,903	€2,420,000		

ΔΟΡΕΧ (1 year): Scenario 4 (400 €/ton NH3 & 100 €/ton CO2)

	ICE (NH3)	Conventional
Main engine	€55,000	€55,000
Cracker	€15,028	€-
Evaporator	€11,661	€-
Fuel	€4,719,562	€4,594,195
DeNOx	€188,735	€188,735
Less income	€597,185	€-
ΔΟΡΕΧ	€5,587,172	€4,837,930

Cost calculations 18,000 ton DWT:

General data: ICE (NH3)			
	[kWe]	[kW]	
Main engine		8,000	
Engine margin 10%		7,750	
Engine margin 15%		8,206	
Operational point		6,975	
Proppeller shaft		6,500	
Hotel	180	204	
Re-liq.	0	0	
Main engine support	240	271	

Main engine running		
time	6500	[h]
Main engine output	45,338,235	[kWh]
Main engine output	163,217,647	[MJ]
Ammonia	17,006	[ton]

General data: Conventional				
	[kWe]	[kW]		
Main engine		:	8,500	
Engine margin 10%		:	8,215	
Engine margin 15%		:	8,698	
Operational point			1 50% 3 50%	
Proppeller shaft		(6,500	
Hotel	180		204	
Re-liq.	350		396	
Main engine support	260		294	
Main engine running time		6500	[h]	
Main engine output	46,77	2,059	[kWh]	
Main engine output	168,37	9,412	[MJ]	
Low sulphur 0.5% HFO		8,419	[ton]	

Less income:
CaseSingle trip4,000[nm]Retour (Autonomy)8,000[nm]Speed15[kts]Duration retour533[hours]DWT18,000[ton]

		Base	NH3
		Conventional	ICE
Operational point			
(average)	[kW]	7196	4,839
Output	[kWh]	3,837,867	1,382,571
Output	[MJ]	13,816,320	4,997,257
Eta	[-]	50.0%	51.6%
LHV fuel	[MJ/ton]	40,000	18,600
Fuel mass	[ton]	691	519
Fuel margin	[-]	10%	10%
DWT fuel	[ton]	760	1,535
DWT other	[ton]	200	200
DWT cargo	[ton]	17,040	16,265

1 year	Conventional	ICE
OPEX fuel	€4,209,485	
OPEX fuel total part	25%	
OPEX total	€16,837,940	
ΔOPEX (excl: less income)	€4,575,118	
OPEX base	€12,262,822	
OPEX total/DWT cargo per ton	€988	
Less cargo [ton]	-	775
Less income	€-	€765,792

ΔCAPEX: Scenario 1					
ICE (NH3) Conventiona					
Main engine	€3,200,000	€3,400,000			
Cracker	€2,185,884	€-			
Evaporator	€1,696,157	€-			
DeNOx	€320,000	€340,000			
ΔCAPEX	€7,402,041	€3,740,000			

ΔOPEX (1 year): Scenario 1

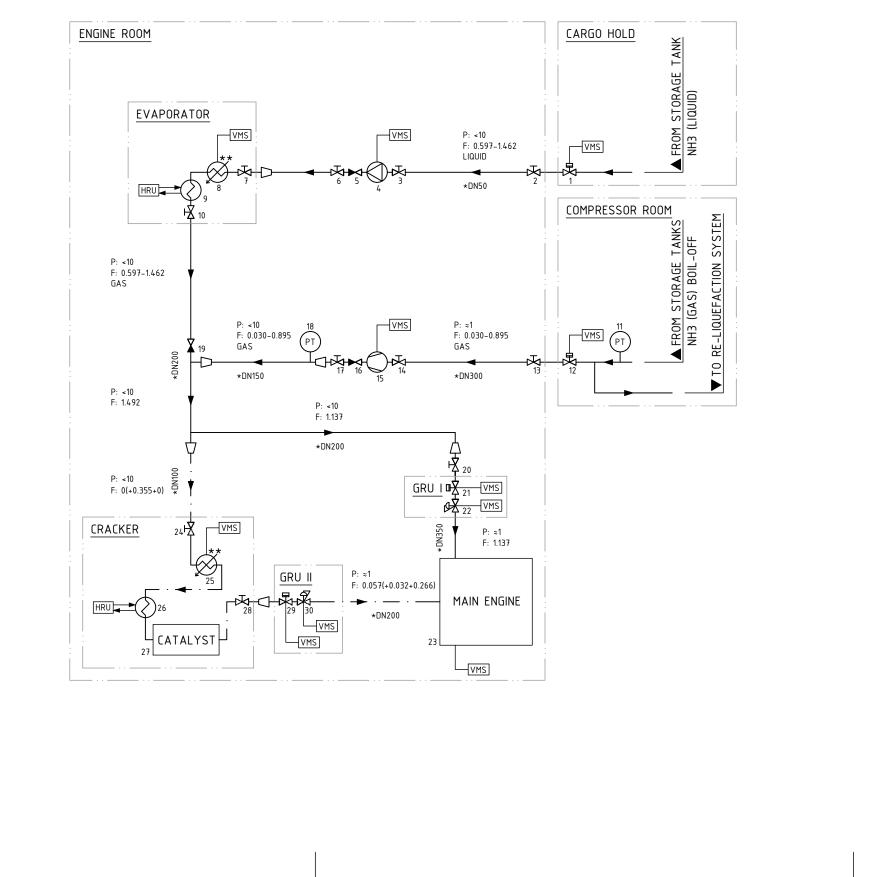
	ICE (NH3)	Conventional
Main engine	€80,000	€85,000
Cracker	€21,859	€-
Evaporator	€16,962	€-
Fuel	€14,455,176	€4,209,485
DeNOx	€272,029	€280,632
Less income	€765,792	€-
ΔΟΡΕΧ	€15,611,818	€4,575,118

ΔCAPEX: Scenario 4 (400 €/ton NH3 & 100 €/ton CO2)

<u> </u>		, ,
	ICE (NH3)	Conventional
Main engine	€3,200,000	€3,400,000
Cracker	€2,185,884	€-
Evaporator	€1,696,157	€-
DeNOx	€320,000	€340,000
ΔCAPEX	€7,402,041	€3,740,000

ΔΟΡΕΧ (1 year): Scenario 4 (400 €/ton NH3 & 100 €/ton CO2)

	ICE (NH3)	Conventional
Main engine	€80,000	€85,000
Cracker	€21,859	€-
Evaporator	€16,962	€-
Fuel	€6,802,436	€6,831,153
DeNOx	€272,029	€280,632
Less income	€765,792	€-
ΔΟΡΕΧ	€7,959,078	€7,196,785


Cost comparisons (Conventional vs ICE (NH3)):

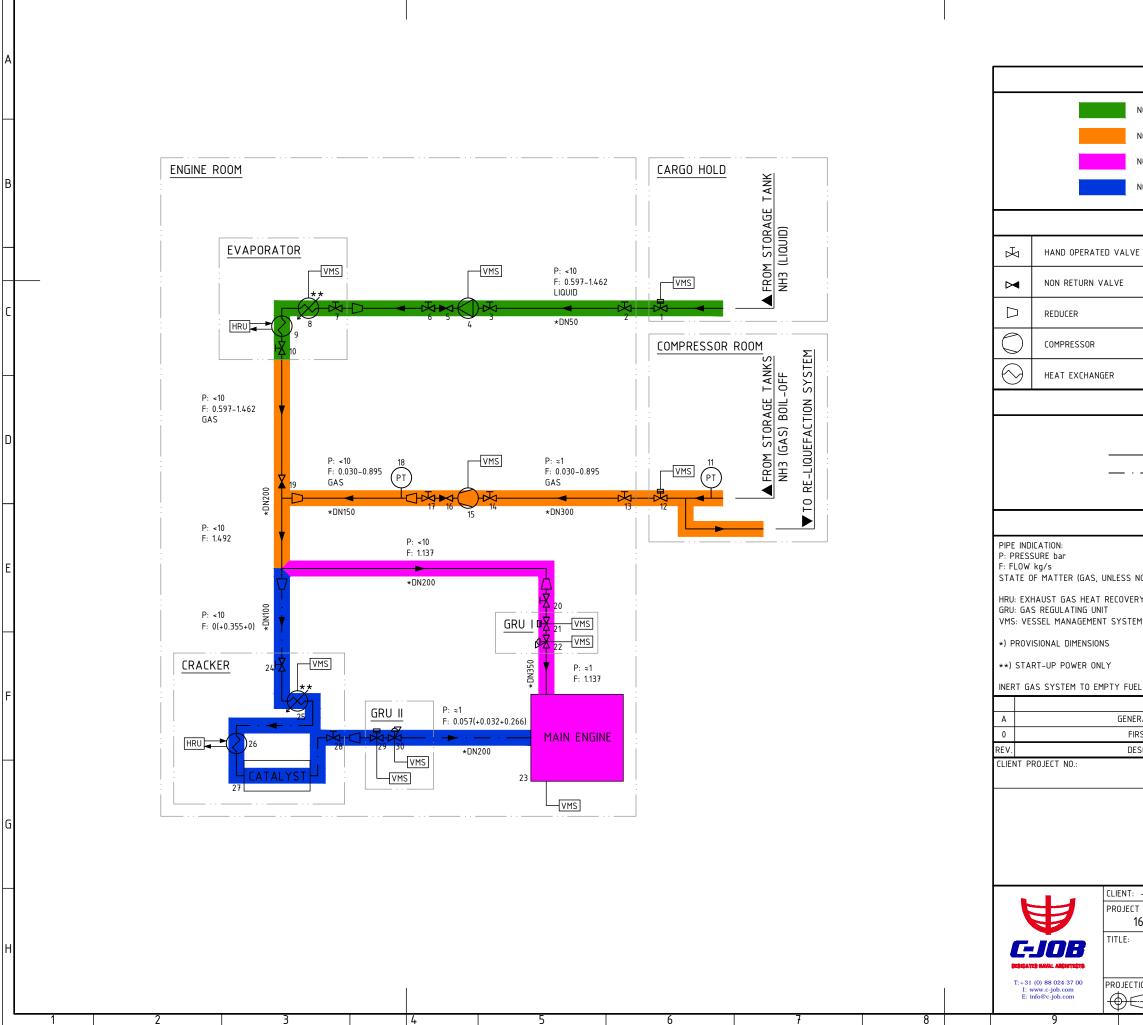
See.	norio 1	DWT [ton]			
Scel	Scenario 1		18,000	54,000	
	ΔCAPEX	€5,088,903	€7,402,041	€13,240,400	
ICE (NH3)	ΔOPEX (1 year)	€10,896,679	€15,611,818	€27,050,261	
	ΔΤCΟ	€277,505,880	€397,697,493	€689,496,925	
	ΔCAPEX	€2,420,000	€3,740,000	€7,075,200	
Conventional	ΔOPEX (1 year)	€3,074,765	€4,575,118	€8,236,538	
	ΔΤCΟ	€79,289,118	€118,117,941	€212,988,650	

Scenario 4		DWT [ton]			
(400 €/ton NH3 & 100 €/ton CO2)		6,000	18,000	54,000	
	ΔCAPEX	€5,088,903	€7,402,041	€13,240,400	
ICE (NH3)	∆OPEX (1 year)	€5,587,172	€7,959,078	€13,611,481	
	ΔΤCΟ	€144,768,192	€206,378,984	€353,527,425	
	ΔCAPEX	€2,420,000	€3,740,000	€7,075,200	
Conventional	ΔOPEX (1 year)	€4,837,930	€7,196,785	€12,955,838	
	ΔΤCΟ	€123,368,246	€183,659,627	€330,971,158	

APPENDIX Q: DIAGRAM NH3 FUEL SYSTEM (TECHNICAL BASIS)

14

Ы HAND OPERATED VAL NON RETURN VALVE \square REDUCER \bigcirc COMPRESSOR \bigcirc HEAT EXCHANGER PIPE INDICATION: P: PRESSURE bar F: FLOW kg/s STATE OF MATTER (GAS, UNLESS HRU: EXHAUST GAS HEAT RECOVE GRU: GAS REGULATING UNIT VMS: VESSEL MANAGEMENT SYST *) PROVISIONAL DIMENSIONS **) START-UP POWER ONLY INERT GAS SYSTEM TO EMPTY FU GEN 0 REV. CLIENT PROJECT NO .: CLIENT PROJE E


C-JOB

T:+31 (0) 88 024 37 00 I: www.c-job.com E: info@c-job.com

8

9

10		11			12	
						А
						\vdash
						в
SYM						
ED VALVE	R	REMOTE OPER	RATED VA	LVE		
/ALVE	RA	PRESSURE RE	GULATING	VALVE		+
	PT	PRESSURE T	RANSMITTE	R		C
	\bigcirc	CENTRIFUGAL	PUMP			1
GER	\bigotimes	HEATER				
LEG	end End					1
						1
NH3 F	UEL					D
	H3+N2) FU	EL				
						╞
NO	TES					
						E
UNLESS NOTED OTHERWISE)						ľ
RECOVERY UNIT						
IT SYSTEM (POWER SUPPLY AN	ID CONTRO)L)				┝
LY						
1PTY FUEL LINES FOR MAINTEN	ANCE TO	BE ADDED				_
GENERAL UPDATE		NDV	PL	WZ	20190503	F
FIRST ISSUE		ND V ND V	PL	WZ WZ	20190503	-
DESCRIPTION	CLIENT D	DRAWN RAWING NO.:	CHECK.	APPR.	DATE	
						G
CLIENT: -		YARD NO.	-	CLASS NO):_	┥
PROJECT NUMBER: DRAWI	NG NUMBE	R: STATUS:				1
TITLE:	99-301			MINAR	T	
DIAGR.		13 FUEL S		.Μ		Н
PROJECTION: DIM. UNIT: COPYRIGHT	OF C-JOB, WHO: IENT REMAINS, N	SE PROPERTY, O PART THEREOF DURING ATED OR	SHEET			:
	IER WAY MADE		1–1	N.A	. A2	
10		11			12	

10		11			12	1
						Α
COLOUR CODING						
Node 1: Main Liquie) AMMONIA SU	PPLY				
NODE 2: MAIN GASE	OUS AMMONIA	SUPPLY				
NODE 3: AMMONIA E	NGINE SUPPLY	1				
NODE 4: HYDROGEN	ENGINE SUPPI	LY				В
SYN	1BOLS					
VE	Χu	REMOTE OPER	RATED VA	LVE		_
	Ŕ	PRESSURE RE	GULATING	VALVE		
	PT	(PT) PRESSURE TRANSMITTER				
		CENTRIFUGAL	PUMP			
		HEATER				L
١F	<u>GEND</u>					
NH3	FUEL					D
· · H2(-	∙NH3+N2) FUEL					
NC	DTES					
						E
NOTED OTHERWISE)						
ERY UNIT TEM (POWER SUPPLY		١				
LII (FUWER SUFFEI	AND CONTROL	I				
JEL LINES FOR MAINT	ENANCE TO BE	ADDED			<u></u>	F
ERAL UPDATE		NDV	PL	WZ	20190503	
ERST ISSUE		NDV DRAWN	PL CHECK.	WZ APPR.	20190412 DATE	
	CLIENT DRA					_
						G
		YARD NO.	: -	CLASS NO	.: -	╞
ct number: drawing number: status: 16.104 999–301 PRELIMINARY						
DIAG	RAM NH	3 FUEL S	SYSTE	M		Н
	(TECHNI	CAL BASIS)			
	DISCLOSED, COPIED, DI OTHER WAY MADE USE	UPLICATED OR	SHEET	SCALE		
10	HE APPROVAL OF C-JO	<u> </u>	1 1-1		12	1

APPENDIX R: FAILURE MODES RISK ASSESSMENT 1

Failure modes risk assessment 1:

Cause:	Identified in system	Various	Various
General Description:	Partial or complete equipment function failure	Leakage	Blockage
Component:		Failure Modes:	
Piping	None, passive equipment	External leakage	None, passive equipment
Hand operated valve	Blocking flow OR unable to stop flow	External leakage	Blocking flow
Non return valve	Blocking flow OR unable to stop counter flow	External leakage	Blocking flow
Remote operated valve	Blocking flow OR unable to stop flow	External leakage	Blocking flow
Pressure regulating valve	Unable to regulate pressure (too high/low) AND/OR blocking flow	External leakage	Blocking flow
Pump	Unable to provide flow OR unable to stop flow	External leakage	Blocking flow
Compressor	Unable to provide flow OR unable to stop flow	External leakage	Blocking flow
Pressure transmitter	Unable to indicate pressure (too high/low or not at all)	External leakage	None
Heater	Unable to provide heat or unable to stop heat supply	External leakage	None
Heat exchanger	Blocking flow AND unable to transfer heat	External leakage OR internal leakage	Blocking flow
Catalyst	None, passive equipment	External leakage	Blocking flow
Main engine	Unable to provide mechanical power OR unable to stop mechanical power supply	External leakage	Blocking flow

Failure Mode:	Fire	Flooding	Blackout			
Component:		Effects:				
Piping	Increase in	Exposed to water	None			
Hand operated valve	temperature and	(pressure)	None			
Non return valve	pressure within		None			
Remote operated	system		Shut down if installed			
valve			with fail close			
Pressure regulating			Loss of pressure			
valve			regulation			
Pump			Shut down loss of flow			
Compressor			Shut down loss of flow			
Pressure transmitter			Shut down			
Heater			Shut down loss of heat			
			supply			
Heat exchanger			Indirect loss of heat			
			supply			
Catalyst			None			
Main engine			Shut down complete			
			loss of mechanical			
			power supply			

APPENDIX S: RISK ASSESSMENT 1

Risk assessment 1:

<u>Nodes</u>

- 1-S-XX Main liquid ammonia supply
- 2-S-XX Main gaseous ammonia supply
- 3-S-XX Ammonia engine supply
- 4-S-XX Hydrogen engine supply
- 5-S-XX Entire system

Subsection

1-1-XX Routing in Cargo Hold

- 1-2-XX Routing from Cargo Hold to Engine Room
- 1-3-XX Routing in Engine Room

2-1-XX Routing in Compressor Room2-2-XX Routing from Compressor Room to Engine Room2-3-XX Routing in Engine Room

- 3-1-XX Routing in Engine Room
- 4-1-XX Routing in Engine Room

5-1-XX Entire system

Risk ID number N-S-01 Risk 01 N-S-02 Risk 02

Green marked text in the mitigation column is a mitigation already mentioned in a previous risk of its corresponding subsection.

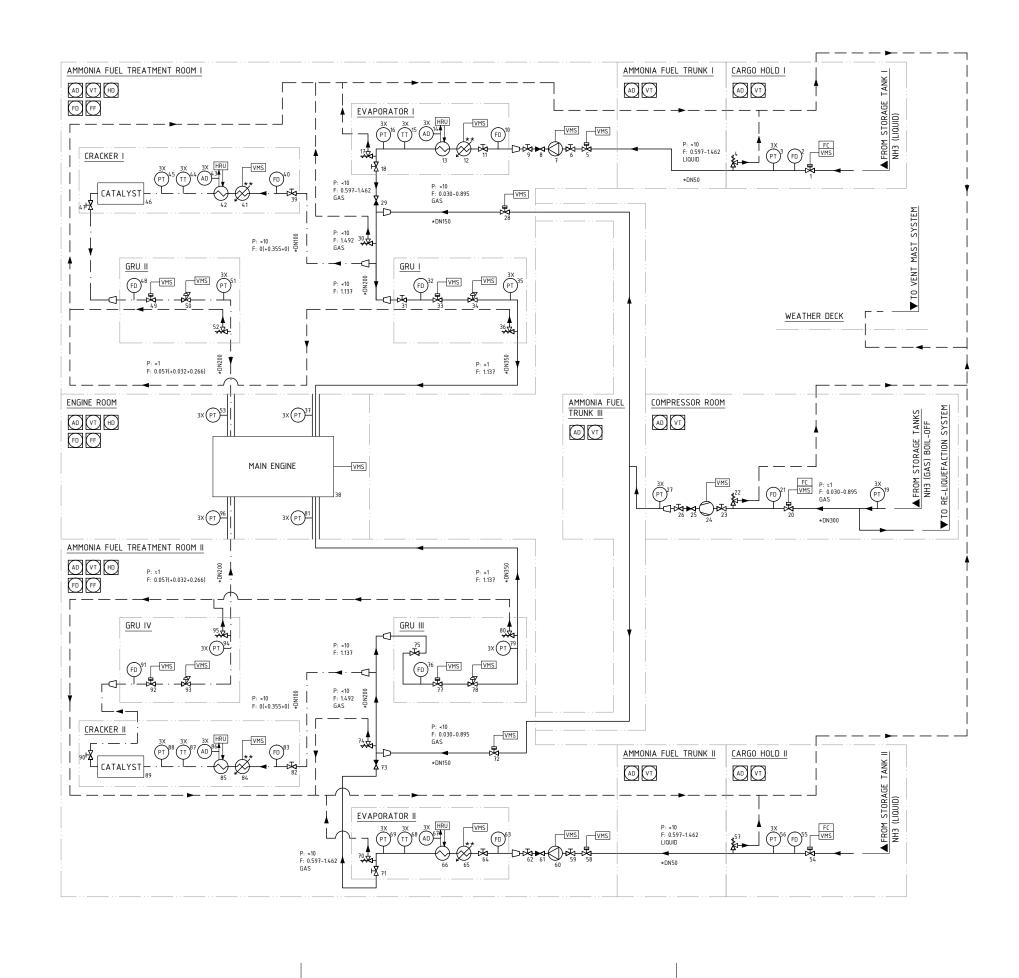
Reference	Failure Mode	Cause	Effect	Detection	Original Risk Ranking	Mitigation	Overall Assessment	Final Risk Ranking
1-1-01	Completely unable to open valve 1	VMS error/bug	Unable to supply fuel to engine	-	D4	1. Add redundancy in supply line 2. Add flow detection	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A4
1-1-02	Completely unable to close valve 1	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	A4	-	-	A4
1-1-03	Ammonia leakage in cargo hold	Various	Cargo hold exposed with liquid and gaseous ammonia	-	E2	1. Add ammonia detection 2. Add ventilation 3. Add redundancy in supply line	Ammonia detection alerts crew and enables them to close valve 1 stopping the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Redundancy assures operation can continue reducing the impact.	C2
1-1-04	Fire in cargo hold	Various	Increase in temperature and pressure within system	Pressure transmitter storage tank	E1	1. Add redundancy in supply line from other source located in different cargo hold 2. Add pressure transmitter 3. Add pressure relieve system	Pressure transmitter alerts crew. Valve 1 can be closed to isolate pressure and temperature in the system. Ammonia can be released by means of the pressure relieve system after valve 1. The pressure buildup before valve 1 can be reduced by the pressure relieve system of the storage tank. Fire can be suppressed by cutting oxygen supply to cargo hold. Redundancy assures operation can continue reducing the impact. Likelihood too low for additional mitigation.	D1
1-1-05	Flooding and ammonia leakage in cargo hold	Ship collision	Cargo hold and environment exposed with liquid and gaseous ammonia	-	E3	1. Route piping with sufficient distance from shell, for example at least B/5 away from side. 2. Add ammonia detection 3. Add flow detection 4. Add redundancy in supply line	Distance in pipe routing from shell reduces likelihood. Flow and ammonia detection alerts crew and enables them to close valve 1 limiting the impact. Redundancy assures operation can continue reducing the impact. Likelihood too low for additional mitigation.	D1
1-2-01	Ammonia leakage in unidentified area (between cargo hold and engine room)	Various	Unidentified area (between cargo hold and engine room) exposed with liquid and gaseous ammonia	-	E4	1. Locate piping in separate trunk 2. Add ammonia detection 3. Add ventilation 4. Add redundancy in supply line	Locating piping in separate trunk reduces the likelihood and impact of leakage. Ammonia detection alerts crew and enables them to close valve 1 stopping the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Redundancy assures operation can continue reducing the impact.	C2

1-2-02	Fire in unidentified area (between cargo hold and engine room)	Various	Increase in temperature and pressure within system	-	F3	pressure transmitter 3. Add pressure	Locating piping in separate trunk reduces the likelihood for exposure to fire. Pressure transmitter alerts crew and enables them to close valve 1 stopping the ammonia supply. Pressure relieve system release remaining ammonia to reduce impact. Redundancy assures operation can continue reducing the impact.	C2
1-2-03	Flooding and ammonia leakage in unidentified area (between cargo hold and engine room)	Ship collision	Unidentified area (between cargo hold and engine room) and environment exposed with liquid and gaseous ammonia	-	E3	1. Route piping with sufficient distance from shell, for example at least B/5 away from side. 2. Add ammonia detection 3. Add flow detection 4. Add redundancy in supply line	Distance in pipe routing from shell reduces likelihood. Flow and ammonia detection alerts crew and enables them to close valve 1 limiting the impact. Redundancy assures operation can continue reducing the impact. Likelihood too low for additional mitigation.	D1
1-3-01	Completely unable to open valve 2	Various	Unable to supply fuel to engine		D4	1. Add redundancy in supply line 2. Add flow detection	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A4
1-3-02	Completely unable to close valve 2	Various	Flow continuous	-	B4	1. Add flow detection	Flow detection alerts crew flow has not stopped yet and should be stopped by closing another valve, for example valve 3. Flow detection also alerts crew repairs are required.	A4
1-3-03	Completely unable to (re)start pump 4	VMS error/bug	Unable to supply fuel to engine		D4	1. Add redundancy in supply line 2. Add flow detection	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A4
1-3-04	Completely unable to stop pump 4	VMS error/bug	Flow continuous	-	B4	1. Add flow detection	Flow detection alerts crew flow has not stopped yet and should be stopped by closing a valve, for example valve 2. Flow detection also alerts crew repairs are required.	A4
1-3-05	Completely unable to allow flow valve 5	Various	Unable to supply fuel to engine	-	D3	1. Add redundancy in supply line 2. Add flow detection	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A3
1-3-06	Completely unable to stop counterflow valve 5	Various	Counter flow in inactive pump	-	В3	1. Add flow detection	Flow detection alerts crew of counter flow and should be stopped by closing another valve, for example valve 3.	A3
1-3-07	Completely unable to supply heat heater 8	VMS error/bug	Unable to supply fuel to engine	-	D3	1. Add temperature transmitter 2. Add pressure transmitter 3. Add redundancy in supply line	Temperature monitoring and pressure transmitter alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A3
1-3-08	Completely unable to stop heat supply heater 8	VMS error/bug	Temperature and pressure increase of fuel/gaseous ammonia supply	-	B4		Temperature monitoring and pressure transmitter alerts crew repairs are required and switch off HRU with heat exchanger to prevent overheating/high pressures.	A4

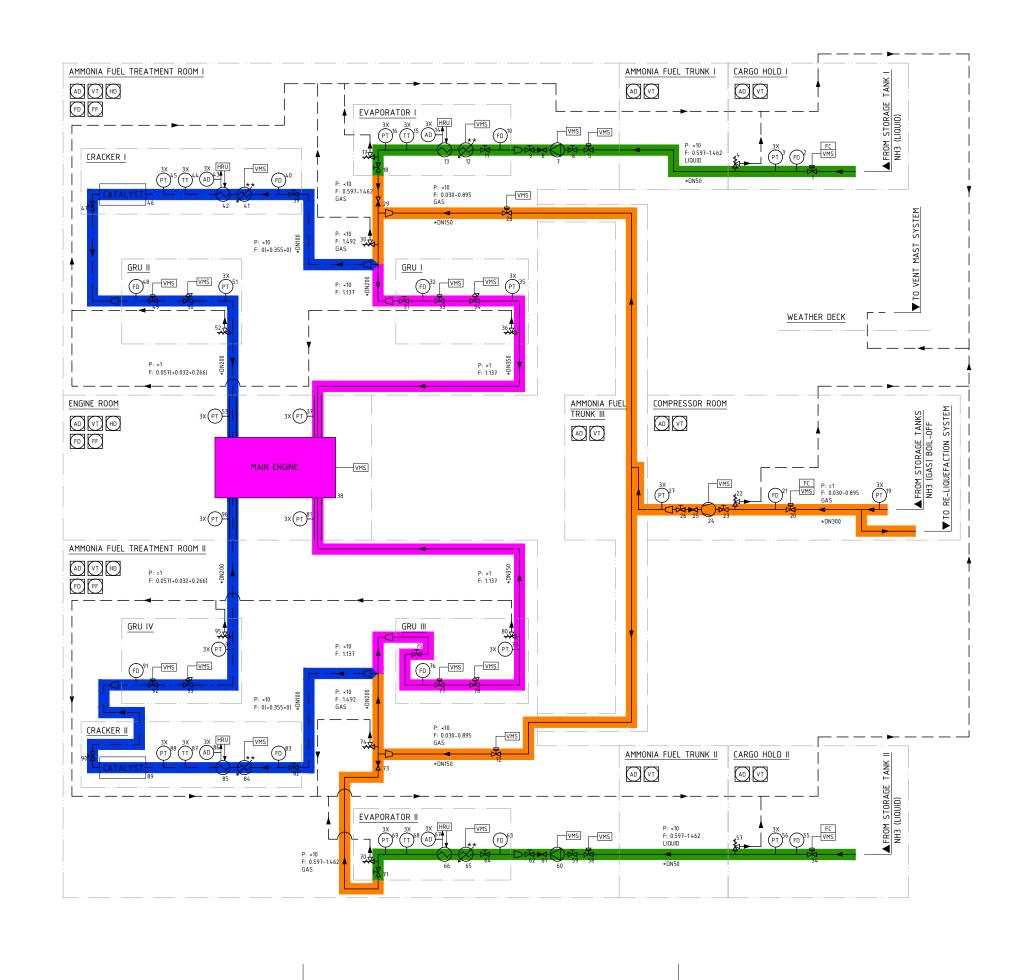
1-3-09	Complete blockage of flow and completely unable to transfer heat heat exchanger 9	Contamination	Unable to supply fuel to engine	-	D2	1. Add flow detection 2. Add temperature transmitter 3. Add pressure transmitter 4. Add redundancy in supply line	Temperature monitoring, pressure transmitter and flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A2
1-3-10	Leaking ammonia in HRU from heat exchanger 9	Various	Buildup of ammonia contamination in HRU	-	В3	1. Add ammonia detection in HRU return line	Ammonia detection alerts crew HRU is contaminated and that repairs are required.	A3
1-3-11	Ammonia leakage in engine room	Various	Engine room exposed with liquid and gaseous ammonia	-	E4	 Locate piping outside of engine room 2. Add ammonia detection 3. Add ventilation Add remote operated isolation valve5. Add redundancy in supply line 	Locating piping in separate space reduces the likelihood and impact of leakage. Ammonia detection alerts crew and enables them to close the added remote operated isolation valve stopping the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Redundancy assures operation can continue reducing the impact.	C2
1-3-12	Fire in engine room	Various	Increase in temperature and pressure within system	-	E4	Add pressure transmitter 3. Add temperature monitoring 4. Add pressure relieve system 5. Add remote operated	Locating piping in space trunk reduces the likelihood for exposure to fire. Pressure transmitter and temperature monitoring alerts crew and enables them to close the added remote operated isolation valve stopping the ammonia supply. Pressure relieve system releases remaining ammonia to reduce impact. Redundancy assures operation can continue reducing the impact.	C2
1-3-13	Flooding and ammonia leakage in piping in engine room	Ship collision	Engine room and environment exposed with liquid and gaseous ammonia	-	E3	1. Route piping with sufficient distance from shell, for example at least B/5 away from side. 2. Add ammonia detection 3. Add flow detection 4. Add remote operated isolation valve 5. Add redundancy in supply line	Distance in pipe routing from shell reduces likelihood. Flow and ammonia detection alerts crew and enables them to close the added remote operated isolation valve stopping limiting the impact. Redundancy assures operation can continue reducing the impact. Likelihood too low for additional mitigation.	D1
2-1-01	Completely unable to indicate pressure pressure transmitter 11	Various	Unable to regulate compressor for fuel and reliquefaction system. Pressure build up in storage tank engaging pressure relieve system of storage tank	-	C4	1. Add double redundant pressure transmitters	With 3 pressure transmitters in total 2 will always indicate the correct pressure when 1 fails. Impact reduced as correct operation is covered with 3 pressure transmitters.	A4
2-1-02	Completely unable to open valve 12	VMS error/bug	Unable to use boil-off for fuel, boil-off will be reliquefied	Pressure transmitter and reliquefication system	A4	-	-	A4
2-1-03	Completely unable to close valve 12	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	A4	-	-	A4

2-1-04	Ammonia leakage in compressor room	Various	Compressor room exposed with liquid and gaseous ammonia	-	E2	1. Add ammonia detection 2. Add ventilation	Ammonia detection alerts crew and enables them to close valve 12 stopping the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia.	C2
2-1-05	Fire in compressor room	Various	Increase in temperature and pressure within system	Pressure transmitter	E1	1. Add pressure relieve system	Pressure transmitter alerts crew. Valve 12 can be closed to isolate pressure and temperature in the system. Ammonia can be released by means of the pressure relieve system after valve 21. The pressure buildup before valve 12 can be reduced by the pressure relieve system of the storage tank. Fire can be suppressed by cutting oxygen supply to cargo hold. Likelihood to low for additional mitigation.	D1
2-2-01	Ammonia leakage in unidentified area (between cargo hold and engine room)	Various	Unidentified area (between compressor room and engine room) exposed with gaseous ammonia	-	E4	1. Locate piping in separate trunk 2. Add ammonia detection 3. Add ventilation	Locating piping in separate trunk reduces the likelihood and impact of leakage. Ammonia detection alerts crew and enables them to close valve 11 stopping the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia.	C2
2-2-02	Fire in unidentified area (between compressor room and engine room)	Various	Increase in temperature and pressure within system	-	E3	1. Locate piping in separate trunk 2. Add pressure transmitter 3. Add pressure relieve system	Locating piping in separate trunk reduces the likelihood for exposure to fire. Pressure transmitter alerts crew and enables them to close valve 1 stopping the ammonia supply. Pressure relieve system release remaining ammonia to reduce impact. Redundancy assures operation can continue reducing the impact.	C2
2-2-03	Flooding and ammonia leakage in unidentified area (between compressor room and engine room)	Ship collision	Unidentified area (between compressor room and engine room) and environment exposed with liquid and gaseous ammonia	-	E3	1. Route piping with sufficient distance from shell, for example at least B/5 away from side. 2. Add ammonia detection 3. Add flow detection	Distance in pipe routing from shell reduces likelihood. Flow and ammonia detection alerts crew and enables them to close valve 11 limiting the impact. Likelihood to low for additional mitigation.	D1
2-3-01	Completely unable to open valve 13	Various	Unable to use boil-off for fuel, boil-off will be reliquefied	Pressure transmitter and reliquefication system	A4	-	-	A4
2-3-02	Completely unable to close valve 13	Various	Flow is stopped by inactive equipment in supply line	-	A4	-	-	A4
2-3-03	Completely unable to start compressor 15	VMS error/bug	Unable to use boil-off for fuel, boil-off will be reliquefied	Pressure transmitter and reliquefication system	A4	-	-	A4
2-3-04	Completely unable to stop compressor 15	VMS error/bug	Flow continuous	-	B4	1. Add flow detection	Flow detection alerts crew flow has not stopped yet and should be stopped by closing another valve, for example valve 17. Flow detection also alerts crew repairs are required.	A4

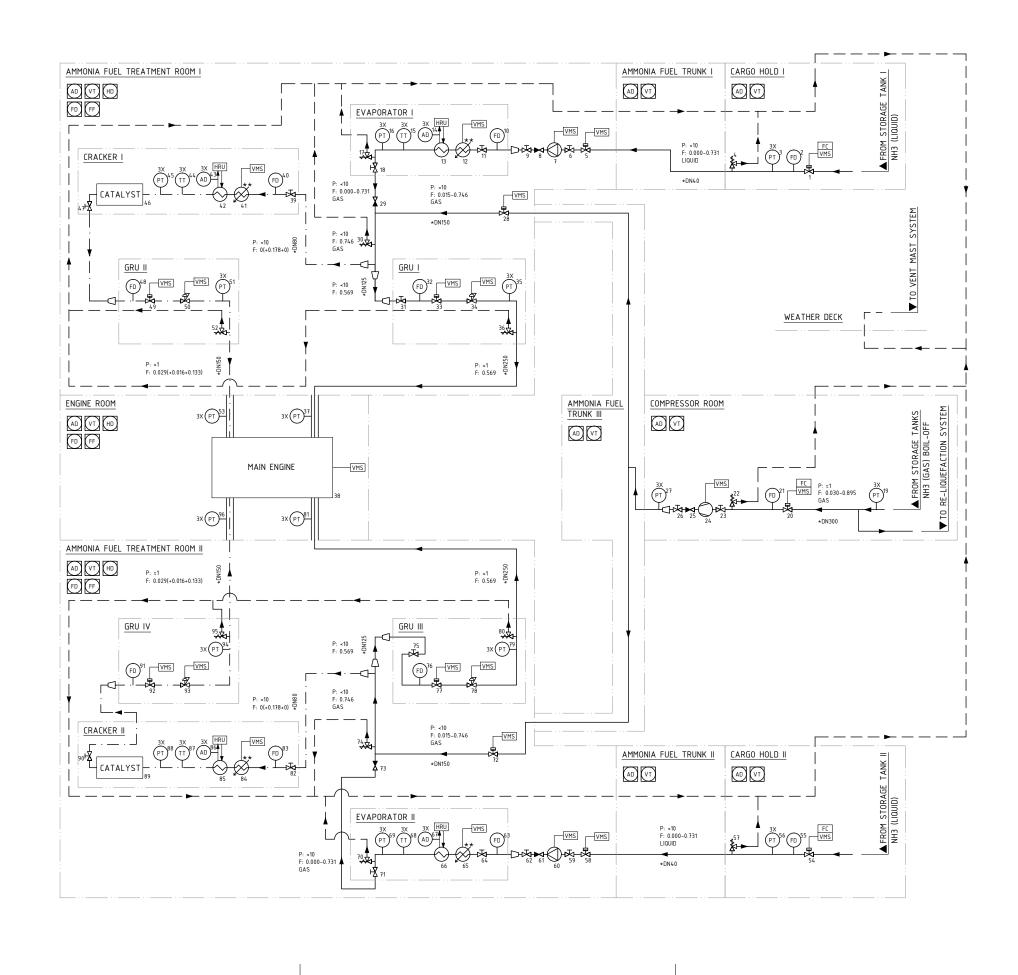
2-3-05	Completely unable to allow flow valve 16	Various	Unable to use boil-off for fuel, boil-off will be reliquefied	Pressure transmitter and reliquefication system	A3	-	-	A3
2-3-06	Completely unable to stop counterflow valve 16	Various	Pressure and flow fluctuations in system	-	В3	1. Add flow detection	Flow detection alerts crew and enables them to close valve 12 to stop counter flow.	A3
2-3-07	Completely unable to allow flow valve 19	Various	Unable to supply fuel to engine	-	D3	1. Add flow detection 2. Add redundancy in supply line	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A3
2-3-08	Completely unable to stop counterflow valve 19	Various	Minor amount of back flow when pump 4 is inactive as non return valve 5 will prevent continuous back flow	-	A3	-	-	A3
2-3-09	Ammonia leakage in engine room	Various	Engine room exposed with gaseous ammonia	-	E4	 Locate piping outside of engine room 2. Add ammonia detection 3. Add ventilation Add remote operated isolation valves 5. Add redundancy in supply line 	Locating piping in separate space reduces the likelihood and impact of leakage. Ammonia detection alerts crew and enables them to close the added remote operated isolation valves stopping the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Redundancy assures operation can continue reducing the impact.	C2
2-3-10	Fire in engine room	Various	Increase in temperature and pressure within system	-	E4	1. Locate piping outside of engine room 2. Add pressure relieve system 3. Add remote operated isolation valves 4. Add redundancy in supply line	Locating piping in space trunk reduces the likelihood for exposure to fire. Pressure transmitter alerts crew and enables them to close the added remote operated isolation valves stopping the ammonia supply. Pressure relieve system releases remaining ammonia to reduce impact. Redundancy assures operation can continue reducing the impact.	C2
2-3-11	Flooding and ammonia leakage in piping in engine room	Ship collision	Engine room and environment exposed with gaseous ammonia	-	E3	1. Route piping with sufficient distance from shell, for example at least B/5 away from side 2. Add ammonia detection 3. Add flow detection 4. Add remote operated isolation valves 5. Add redundancy in supply line	Distance in pipe routing from shell reduces likelihood. Flow and ammonia detection alerts crew and enables them to close the added remote operated isolation valves stopping limiting the impact. Redundancy assures operation can continue reducing the impact. Likelihood too low for additional mitigation.	D1
3-1-01	Completely unable to open valve 21	VMS error/bug	Unable to supply fuel to engine	-	D4	1. Add redundancy in supply line 2. Add flow detection	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A4
3-1-02	Completely unable to close valve 21	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	A4	-	-	A4

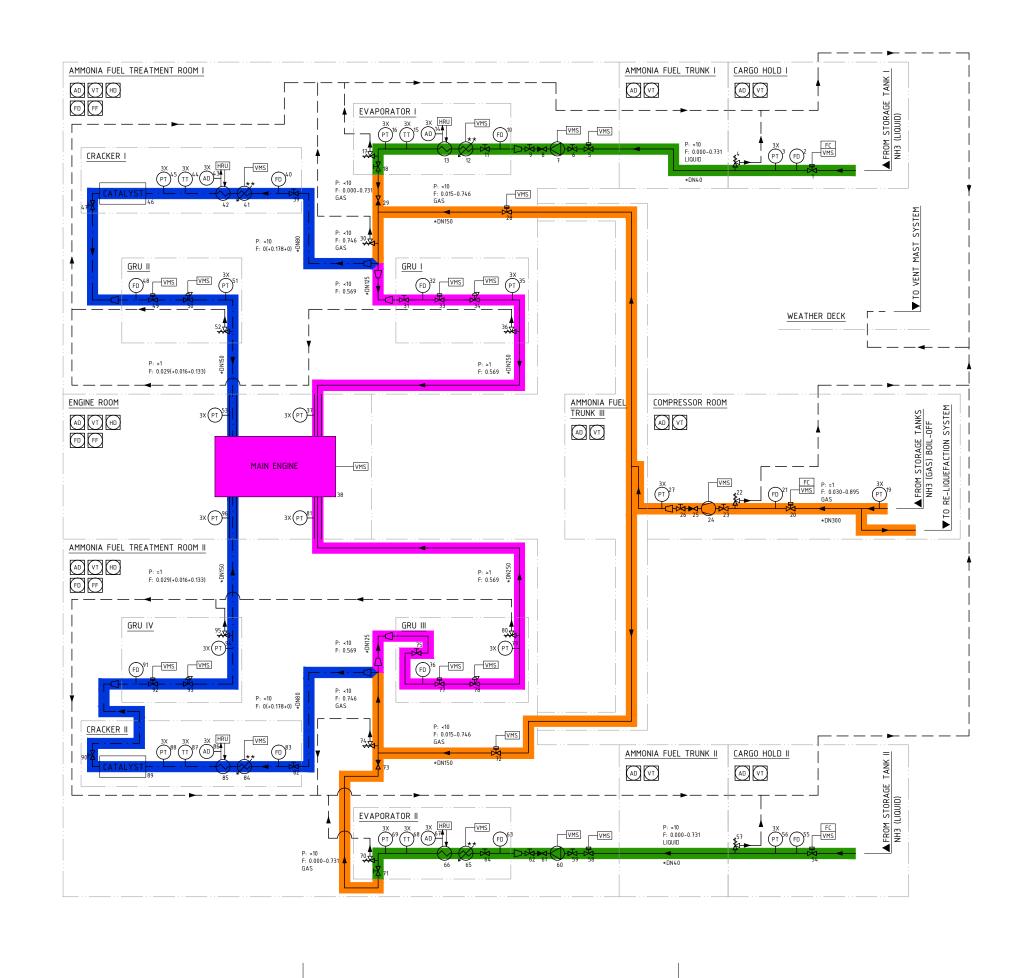

3-1-03	Completely unable to regulate pressure valve 22 blocking flow	VMS error/bug	Unable to supply fuel to engine	-	D4	1. Add redundancy in supply line 2. Add flow detection	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	Α4
3-1-04	Completely unable to regulate pressure valve 22 supplying high pressure	VMS error/bug	Too high pressure in fuel supply to engine	-	D4	1. Add pressure transmitter 2. Add pressure relieve system 3. Add redundancy in supply line	Pressure transmitter alerts crew and enables them to close valve 21. Pressure relieve system releases the excess ammonia to prevent too high pressures for the engine. Redundancy assures operation can start reducing the impact.	B4
3-1-05	Shut down/failure main engine 23	Various	Loss of power for propulsion and PTO	VMS	E2	-	Likelihood too low for mitigation.	E2
3-1-06	Ammonia leakage in engine room	Various	Engine room exposed with gaseous ammonia	-	E4	1. Locate piping outside of engine room as much as possible 2. Add double walled piping for ammonia fuel supply in engine room 3. Add pressure transmitter to monitor double walled piping 4. Add ammonia detection 5. Add ventilation 6. Add redundancy in supply line	Locating piping in separate space as much as possible reduces the likelihood and impact of leakage. Ammonia detection alerts crew and enables them to close the added remote operated isolation valve stopping the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Redundancy assures operation can continue reducing the impact. Adding double walled piping and pressure transmitter limits impact and likelihood for a leakage in the engine room.	C2
3-1-07	Fire in engine room	Various	Increase in temperature and pressure within system	-	E4	 Locate piping outside of engine room as much as possible 2. Add pressure transmitter 3. Add pressure relieve system Add remote operated isolation valve 5. Add fire detection system 6. Add fire fighting system 	Locating piping in separate space as much as possible reduces the likelihood for exposure to fire. Pressure transmitter alerts crew and enables them to close the added remote operated isolation valves if needed stopping the ammonia supply. Pressure relieve system releases remaining ammonia to reduce impact. Fire detection activates the firefighting system limiting the damage in the engine room.	C4
3-1-08	Flooding and ammonia leakage in piping in engine room	Ship collision	Engine room and environment exposed with gaseous ammonia	-	E3	1. Route piping with sufficient distance from shell, for example at least B/5 away from side 2. Add ammonia detection 3. Add flow detection 4. Add remote operated isolation valves 5. Add redundancy in supply line	Distance in pipe routing from shell reduces likelihood. Flow and ammonia detection alerts crew and enables them to close the added remote operated isolation valves stopping limiting the impact. Redundancy assures operation can continue reducing the impact. Likelihood too low for additional mitigation.	D1

4-1-01	Completely unable to supply heat heater 25	VMS error/bug	Unable to supply fuel to engine	-	D3	 Add temperature transmitter 2. Add pressure transmitter 3. Add redundancy in supply line 	Temperature monitoring and pressure transmitter alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A3
4-1-02	Completely unable to stop heat supply heater 25	VMS error/bug	Temperature and pressure increase of fuel/gaseous ammonia supply	-	В4	1. Add temperature transmitter 2. Add pressure transmitter	Temperature monitoring and pressure transmitter alerts crew repairs are required and switch off HRU with heat exchanger to prevent overheating/high pressures.	A4
4-1-03	Complete blockage of flow and completely unable to transfer heat heat exchanger 26	Contamination	Unable to supply fuel to engine	-	D2	 Add flow detection 2. Add temperature transmitter 3. Add pressure transmitter 4. Add redundancy in supply line 	Temperature monitoring, pressure transmitter and flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A2
4-1-04	Leaking ammonia in HRU from heat exchanger 26	Various	Buildup of ammonia contamination in HRU	-	B3	1. Add ammonia detection in HRU return line	Ammonia detection alerts crew HRU is contaminated and that repairs are required.	A3
4-1-05	Complete blockage of flow and completely unable to accelerate ammonia cracking catalyst 27	Contamination	Unable to supply fuel to engine	-	D2	1. Add flow detection 2. Add redundancy in supply line	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A2
4-1-06	Completely unable to open valve 29	VMS error/bug	Unable to supply fuel to engine	-	D4	1. Add redundancy in supply line 2. Add flow detection	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A4
4-1-07	Completely unable to close valve 29	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	A4	-	-	A4
4-1-08	Completely unable to regulate pressure valve 30 blocking flow	Various	Unable to supply fuel to engine	-	D4	1. Add redundancy in supply line 2. Add flow detection	Flow detection alerts crew repairs are required. Redundancy assures operation can start reducing the impact.	A4
4-1-09	Completely unable to regulate pressure valve 30 supplying high pressure	Various	Too high pressure in fuel supply to engine	-		1. Add pressure transmitter 2. Add pressure relieve system 3. Add redundancy in supply line	Pressure transmitter alerts crew and enables them to close valve 29. Pressure relieve system releases the excess ammonia & hydrogen to prevent too high pressures for the engine. Redundancy assures operation can start reducing the impact.	B4


4-1-10	Ammonia & hydrogen leakage in engine room	Various	Engine room exposed with gaseous ammonia & hydrogen	-	E4	1. Locate piping outside of engine room as much as possible 2. Add double walled piping for ammonia & hydrogen fuel supply in engine room 3. Add pressure transmitter to monitor double walled piping 4. Add ammonia & hydrogen detection 5. Add ventilation 6. Add redundancy in supply line	reduces the impact of the limited amount of spilled ammonia & hydrogen. Redundancy assures operation can	C2
4-1-11	Fire in engine room	Various	Increase in temperature and pressure within system	-		 Locate piping outside of engine room as much as possible 2. Add pressure transmitter 3. Add pressure relieve system Add remote operated isolation valve 5. Add fire detection system 6. Add fire fighting system 	Locating piping in separate space as much as possible reduces the likelihood for exposure to fire. Pressure transmitter alerts crew and enables them to close the added remote operated isolation valves if needed stopping the ammonia & hydrogen supply. Pressure relieve system releases remaining ammonia & hydrogen to reduce impact. Fire detection activates the firefighting system limiting the damage in the engine room.	C4
4-1-12	Flooding and ammonia & hydrogen leakage in piping in engine room	Ship collision	Engine room and environment exposed with gaseous ammonia & hydrogen	-	E3	1. Route piping with sufficient distance from shell, for example at least B/5 away from side 2. Add ammonia & hydrogen detection 3. Add flow detection 4. Add remote operated isolation valves 5. Add redundancy in supply line	Distance in pipe routing from shell reduces likelihood. Flow and ammonia & hydrogen detection alerts crew and enables them to close the added remote operated isolation valves stopping limiting the impact. Redundancy assures operation can continue reducing the impact. Likelihood too low for additional mitigation.	D1
5-1-01	Overall blackout	Various	Shut down of all systems and free unregulated flow of ammonia	-	E2	1. Add fail close on main supply valves	The fail close will close the valves once there is loss of power stopping the ammonia flow towards the engine room reducing the impact.	D2

APPENDIX T: DIAGRAM NH3 FUEL SYSTEM (2X 100%)


3		14	15			16		ı İ
								А
								В
								С
	1		SYMBOLS					Ļ
A	HAND OPERATI	ED VALVE	A	REMOTE	OPERATED VA	LVE		
	NON RETURN V	ALVE	×.	PRESSU	RE REGULATING	i VALVE		D
\square	REDUCER		Å	PRESSU	RE RELIEVE VA	LVE		
0	COMPRESSOR		\bigcirc	PUMP				L
\odot	HEAT EXCHANG	SER	\bigotimes	HEATER				
FD	FLOW DETECTO)R	PT	PRESSU	RE TRANSMITT	ER		E
AD	AMMONIA DETE	CTOR		TEMPER	ATURE TRANSP	1ITTER		ľ
AD	SPACE: AMMON	IA DETECTION	HD	SPACE:	HYDROGEN DET	ECTION		
FD	SPACE: FIRE DI	ETECTION	T	SPACE:	VENTIALTION			[
FF	SPACE: FIRE FI	IGHTING SYSTEM						
			LEGEND					F
			 NH3 FUEL H2(+NH3+N2) FUI 	EL				
			AIR/GAS VENT					
		_ · _ · _	H2(+NH3+N2) FU		WALLED			
			NOTES					G
P: PRES F: FLOW		UNLESS NOTED OTHER	WISE)					
GRU: GA VMS: VE FC: FAIL	CLOSE, CLOSES V	IT IT SYSTEM (POWER SU VALVE IN CASE OF BLA		IL)				н
	ISIONAL DIMENSION							
1) SYST	EM DESIGN BASED	ON ZERO LEAKAGE IN EVELOPMENT OF SYSTI						┞
2) ALL 5 3) REDU	SPACE SYSTEMS, 1	TRANSMITTERS AND DI E SYSTEMS TO BE REV	ETECTORS CONNECT	ED WITH V	MS			
		EMPTY FUEL LINES FI ROUTED B/5 FROM O		O BE ADDE	D			ľ
7) HAZA 8) HAZA 9) ADDII	ARDOUS AREAS OF ARDOUS AREA AND TIONAL MEASURES	TO BE LOCATED OUTSI VENTILATION EXHAUS I MEASURES TO MONIT FOR MITIGATION OF A	OR FLOW/ACTIVITY	NED OF VENT I			ARING TO	
BE REVI	EWED							
A 0		GENERAL UPDATE FIRST ISSUE		NE		WZ WZ	20190503 20190412	J
REV. CLIENT P	PROJECT NO.:	DESCRIPTION	CLIENT D	DRA RAWING NO		APPR.	DATE	
								к
		CLIENT: -		YAR) NO.: -	CLASS NO	.: -	
1	ŧ	PROJECT NUMBER: 16.104	DRAWING NUMBE 999-301	R: STA		MINAR	Y	╞
C								L
T: + 3) I: E:	1 (0) 88 024 37 00 www.c-job.com info@c-job.com		T: COPYRIGHT OF C-JOB, WHOS THIS DOCUMENT REMAINS. N MAY BE DISCLOSED, COPIED IN ANY OTHER WAY MADE I WITH THE APPROVAL OF C-	E PROPERTY, 0 PART THEREOF DUPLICATED OR JSE OF EXCEPT IOR	REV.: SHEET			
		14	WITH THE APPROVAL OF C- 15	.801		16		1


									A
									в
			60.01						
		COLOUR							
		NODE 1: MAIN LIQUID							
	_	NODE 2: MAIN GASEOU NODE 3: AMMONIA EN			PPLY				
		NODE 4: HYDROGEN E							C
			BOLS						
Ā	HAND OPERATED			RF	MOTE OPER	ΑΤΕΠ να	VF		
			N N						
	NON RETURN VA	AL VE			ESSURE RE				D
	REDUCER		Å.	PR	ESSURE RE	LIEVE VA	LVE		
\bigcirc	COMPRESSOR		\bigcirc	PU	MP				
\bigotimes	HEAT EXCHANGE	ER	\bigotimes	HE	ATER				
(FD)	FLOW DETECTOR	2	(PT)	PR	ESSURE TR	RANSMITTE	R		E
AD	AMMONIA DETEC	TOR	T	TE	MPERATUR	E TRANSM	ITTER		E
AD	SPACE: AMMONIA	A DETECTION	HD	SP	ACE: HYDR	OGEN DET	ECTION		
FD	SPACE: FIRE DE	TECTION	T	SP	ACE: VENT	IALTION			
FF	SPACE: FIRE FIG	HTING SYSTEM							
		LEG	END						F
		NH3 F	UEL						
			H3+N2) FUI AS VENT	EL					
			UEL DOUBI	LE WA	LLED				
		<u> </u>	H3+N2) FUI	EL DO	UBLE WALI	.ED			G
		NO	TES						
PIPE IND P: PRESS F: FLOW	SURE bar								
STATE C		NLESS NOTED OTHERWISE)							
GRU: GA VMS: VE	S REGULATING UNIT SSEL MANAGEMENT	SYSTEM (POWER SUPPLY A	ND CONTRO	DL)					
	CLOSE, CLOSES VA	LEVE IN CASE OF BLACK OUT							н
	RT-UP POWER ONL								
		ON ZERO LEAKAGE IN NORMAL /ELOPMENT OF SYSTEM, FOR							
		RANSMITTERS AND DETECTOR SYSTEMS TO BE REVIEWED A				E SPACE S	YSTEMS IN		
FAILURE	TO BE INCLUDED					//66 /			1
5) ALL F	UEL PIPING TO BE	EMPTY FUEL LINES FOR MAIN ROUTED B/5 FROM OUTER SH	ELL		AUUEU				
7) HAZA	RDOUS AREAS OF V	D BE LOCATED OUTSIDE HAZ# VENTILATION EXHAUSTS TO E MEASURES TO MONITOR FLOW	E DETERMI	INED	FNT MACT		VIEWED		
	IONAL MEASURES F	OR MITIGATION OF AMMONIA						ARING TO	
A		GENERAL UPDATE			NDV	PL	WZ	20190503	
0 REV.		FIRST ISSUE DESCRIPTION			NDV DRAWN	PL CHECK.	WZ APPR.	20190412 DATE	J
	ROJECT NO.:	BESCHI HON	CLIENT DI	RAWIN		check.	ALLIN.	DATE	
									к
		CLIENT: -			YARD NO.		CLASS NO.	:-	
1		PROJECT NUMBER: DRAW	NG NUMBEI 999-301	R:	STATUS:		MINAR'		Ц
.	INR			13 1				•	
			(2	X 10	0%)				L
T: + 31 I: v E: 1	(0) 88 024 37 00 www.c-job.com nfo@c-job.com	PROJECTION: DIM. UNIT: COPYRIGHT THIS DOCU MAY BE DI MM IN ANY OT WITH THE	OF C-JOB, WHOS MENT REMAINS. N SCLOSED, COPIED, HER WAY MADE L APPROVAL OF 1	SE PROPER ID PART 1 , DUPLICA USE OF EX , IDP	RTY, HEREOF TED OR KCEPT A	SHEET	SCALE		
		14	APPROVAL OF C-				16	1	<u>'</u>

APPENDIX U: DIAGRAM NH3 FUEL SYSTEM (2X 50%)

כ		14		15				10		1
										A
										_
										В
										С
			SYME	BOLS						
A	HAND OPERAT	ED VALVE		Χ	REMOTE	OPER	ATED VA	LVE		ſ
	NON RETURN \	VALVE		×	PRESSU	RE RE	GULATING	VALVE		
\square	REDUCER			Å	PRESSU	RE RE	LIEVE VA	LVE		D
\bigcirc	COMPRESSOR			\bigcirc	PUMP					
\bigcirc	HEAT EXCHAN	GER		\bigotimes	HEATER					ſ
FD	FLOW DETECT	DR		PT	PRESSU	RE TR	ANSMITTE	R		_
AD	AMMONIA DETE	ECTOR		T	TEMPER	ATURE	TRANSM	ITTER		E
AD	SPACE: AMMON	NIA DETECTION		HD	SPACE:	HYDRO	DGEN DET	ECTION		Į
FD	SPACE: FIRE D	ETECTION		VT	SPACE:	VENTI	ALTION			
FF	SPACE: FIRE F	IGHTING SYSTEM								_
			LEG							F
			 NH3 FU H2(+NH 	JEL 13+N2) FUE	iL.					
			AIR/GA		.E WALLED	I				
		<u> </u>	H2(+NH	13+N2) FUE	EL DOUBLE	WALL	ED			
DID5	15 A TION		NOT	ES						G
F: FLOW STATE (SURE bar kg/s DF MATTER (GAS,	UNLESS NOTED OTHE	RWISE)							
GRU: GA VMS: VE FC: FAIL	CLOSE, CLOSES V	IIT IT SYSTEM (POWER S /ALVE IN CASE OF BL		D CONTRO	L)					н
	ISIONAL DIMENSIO									
1) SYST	EM DESIGN BASED	ON ZERO LEAKAGE II EVELOPMENT OF SYST								L
2) ALL 5 3) REDU	SPACE SYSTEMS,	TRANSMITTERS AND E E SYSTEMS TO BE RE	DETECTORS	CONNECT	ED WITH V	MS				
		EMPTY FUEL LINES I ROUTED B/5 FROM (O BE ADDE	D				ľ
7) HAZA 8) HAZA	RDOUS AREAS OF RDOUS AREA AND TIONAL MEASURES	TO BE LOCATED OUTS VENTILATION EXHAU MEASURES TO MONI FOR MITIGATION OF	ISTS TO BE	E DETERMI /ACTIVITY	NED OF VENT				ARING TO	
A		GENERAL UPDATE	-		NE	עו	PL	WZ	20190503	
0 REV.		FIRST ISSUE	-		N	JV JV AWN	PL PL CHECK.	WZ WZ APPR.	20190503 20190412 DATE	J
	ROJECT NO.:	DESCRIPTION		CLIENT DF	RAWING NC		LITELK.	APPR.	UAIL	1
										╞
										к
	1.4	CLIENT: -				D NO.:	-	CLASS NO	l.: -	
	Ð	PROJECT NUMBER: 16.104		ng number 99-301	R: STA	tus: F	PRELI	MINAR	Y	_
C			DIAGRA	(2	X 50%)	ïL S	YSTE	M	_	L
T: + 3) I: E:	i (0) 88 024 37 00 www.c-job.com info@c-job.com		IT: COPYRIGHT THIS DOCUM MAY BE DIS IN ANY OTH	OF C-JOB, WHOS ENT REMAINS. NO CLOSED, COPIED, ER WAY MADE U PPROVAL OF C	E PROPERTY, D PART THEREOF DUPLICATED OR SE OF EXCEPT	REV.: A	SHEET 1-1	SCALE		1
		14	INCH THE V	PPROVAL OF C 15	w0.			16		1

									A
									в
	CO	LOUR	CODI	NG					
	NODE 1: MA	IN LIQUID A	MMONIA S	UPPL	Y				H
	NODE 2: MA	IN GASEOU	s ammoni	a sui	PPLY				
	NODE 3: AM	MONIA ENG	ine suppl	Y					С
	NODE 4: HY	DROGEN EN	IGINE SUP	PLY					
		SYME	BOLS						
Я	HAND OPERATED VALVE		Χu	RE	MOTE OPER	ATED VA	LVE		
X	NON RETURN VALVE		R	PR	ESSURE RE	GULATING	VALVE		
	REDUCER		Å	PR	ESSURE RE	LIEVE VA	LVE		D
\bigcirc	COMPRESSOR		\bigcirc	PU	MP				
\otimes	HEAT EXCHANGER		چ ا	HF	ATER				Η
(FD)	FLOW DETECTOR		(PT)		ESSURE TR		D		
			() ()		MPERATUR				Ε
	AMMONIA DETECTOR								
	SPACE: AMMONIA DETECTION		Ð	SP	ACE: HYDR	OGEN DET	ECTION		
	SPACE: FIRE DETECTION		VT	SP	ACE: VENT	IALTION			
(FF)	SPACE: FIRE FIGHTING SYSTEM								
		LEG	END						F
		 NH3 FI H2(+NH 		-					
		— AIR/G/							H
		_	UEL DOUBI 13+N2) FUI		ALLED UBLE WALI	.ED			
		- N01							G
PIPE IND		NU	IES						
P: PRESS F: FLOW STATE 0		RWISE)							
HRU: EXI	HAUST GAS HEAT RECOVERY UNIT								
VMS: VE	S REGULATING UNIT SSEL MANAGEMENT SYSTEM (POWER S CLOSE, CLOSES VALVE IN CASE OF BL		ID CONTRO	L)					
*) PROV	ISIONAL DIMENSIONS								Н
	RT-UP POWER ONLY								
	M DESIGN BASED ON ZERO LEAKAGE I D TO CONTINUE DEVELOPMENT OF SYS								H
3) REDUN	PACE SYSTEMS, TRANSMITTERS AND IDANCY OF SPACE SYSTEMS TO BE RE					F SPACE S	SYSTEMS I	N CASE OF	
4) INERT	TO BE INCLUDED GAS SYSTEM TO EMPTY FUEL LINES			O BE	ADDED				ı
	UEL PIPING TO BE ROUTED B/5 FROM			FAS					
7) HAZA 8) HAZA	RDOUS AREAS OF VENTILATION EXHAU RDOUS AREA AND MEASURES TO MONI	JSTS TO BI TOR FLOW	E DETERMI /ACTIVITY	NED OF V					
9) ADDIT BE REVIE	IONAL MEASURES FOR MITIGATION OF	AMMONIA \	VENTILATIO	ON EIT	THER BY W	ATER SPR	AY OR FL	ARING TO	
A	GENERAL UPDAT	E			NDV	PL	WZ	20190503	
0 REV.	FIRST ISSUE DESCRIPTION				NDV DRAWN	PL CHECK.	WZ APPR.	20190412 DATE	J
CLIENT PI	ROJECT NO.:		CLIENT DI	RAWIN	IG NO.:				
									H
									к
<u> </u>	CLIENT: -				YARD NO.	-	CLASS NO	.: -	
	PROJECT NUMBER: 16.104		NG NUMBEI 199-301	R:	STATUS:	PRELI	MINAR	Y	Ц
C.	TITLE:	JIAGR/		13 I					
T:+31	(0) 88 024 37 00 PR0 JECTION: DIM. UN	IT: COPYRIGHT		X 5		SHEET	SCALE	EORMAT:	L
I: v E: h	now-c-job.com	THIS DOCUM MAY BE DIS IN ANY OTH WITH THE A	PPROVAL OF C-	D PART 1 DUPLICA ISE OF EX JOB.	TED OR KCEPT A	1-1	N.A		
	14		15				16		

APPENDIX V: FAILURE MODES RISK ASSESSMENT 2

Failure modes risk assessment 2:

Cause:	Identified in system	Various	Various				
General Description:	Partial or complete equipment function failure	Leakage	Blockage				
Component:		Failure Modes:					
Piping	None, passive equipment	External leakage	None, passive equipment				
Hand operated valve	Blocking flow OR unable to stop flow	External leakage	Blocking flow				
Non return valve	Blocking flow OR unable to stop counter flow	External leakage	Blocking flow				
Remote operated valve	Blocking flow OR unable to stop flow	External leakage	Blocking flow				
Pressure regulating valve	Unable to regulate pressure (too high/low) AND/OR blocking flow	External leakage	Blocking flow				
Pressure relieve valve	Not relieving pressure at high pressures OR unwanted pressure release at normal conditions	External leakage	None				
Pump	Unable to provide flow OR unable to stop flow	External leakage	Blocking flow				
Compressor	Unable to provide flow OR unable to stop flow	External leakage	Blocking flow				
Pressure transmitter	Unable to indicate pressure (too high/low or not at all)	External leakage	None				
Flow detector	Unable to indicate flow (too high/low or not at all)	External leakage	None				
Ammonia detector	Unable to indicate ammonia concentration (too high/low or not at all)	External leakage	None				
Temperature transmitter	Unable to indicate temperature (too high/low or not at all)	External leakage	None				
Heater	Unable to provide heat or unable to stop heat supply	External leakage	None				

Heat exchanger	Blocking flow AND unable to transfer heat	External leakage OR internal leakage	Blocking flow
Catalyst	None, passive equipment	External leakage	Blocking flow
Main engine	Unable to provide mechanical power OR unable to stop mechanical power supply	External leakage	Blocking flow
Space systems	Unable to perform function	-	-

Failure Mode:	Fire	Flooding	Blackout
Component:		Effects:	
Piping	Increase in	Exposed to water	None
Hand operated valve	temperature and	(pressure)	None
Non return valve	pressure within		None
Remote operated	system		Shut down if installed
valve			with fail close
Pressure regulating			Loss of pressure
valve			regulation
Pressure relieve valve			None
Pump			Shut down loss of flow
Compressor			Shut down loss of flow
Pressure transmitter			Shut down
Flow detector			Shut down
Ammonia detector			Shut down
Temperature			Shut down
transmitter			
Heater			Shut down loss of heat
			supply
Heat exchanger			Indirect loss of heat
	_		supply
Catalyst			None
Main engine			Shut down complete
			loss of mechanical
			power supply
Space system	-	-	Shut down

APPENDIX W: RISK ASSESSMENT 2

Risk assessment 2:

Nodes

1-S-XX Main liquid ammonia supply

2-S-XX Main gaseous ammonia supply

3-S-XX Ammonia engine supply

4-S-XX Hydrogen engine supply

5-S-XX Entire system

Subsection

1-1-XX Routing in Cargo Hold I1-2-XX Routing in Fuel Trunk I1-3-XX Routing in Fuel Treatment Room I

2-1-XX Routing in Compressor Room2-2-XX Routing in Fuel Trunk III2-3-XX Routing in Fuel Treatment Room I

3-1-XX Routing in Fuel Treatment Room I 3-2-XX Routing in Engine Room

4-1-XX Routing in Fuel Treatment Room I 4-2-XX Routing in Engine Room

5-1-XX Entire system

Risk ID number N-S-01 Risk 01 N-S-02 Risk 02

Reference	Failure Mode	Cause	Effect	Detection	Assessment	Risk Ranking
1-1-01	Completely unable to open valve 1	VMS error/bug	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A4
1-1-02	Completely unable to close valve 1	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	-	A4
1-1-03	No/Wrong measurements flow detector 2	Various	Wrong information flow on single point	Different readings compared to other flow detectors	Other detectors can be used to verify actual measurement.	A4
1-1-04	No/Wrong measurements pressure transmitter 3	Various	Wrong information pressure on single point	Different readings compared to other pressure transmitters	Other pressure transmitters can be used to verify actual measurement.	A4
1-1-05	Unwanted opening of pressure relieve valve 4	Various	Gaseous ammonia send to vent mast	Flow detectors and pressure transmitters	Gaseous ammonia send to vent mast, supply can be cut by closing valve 1. Furthermore switch to second supply line to continue operation.	В2
1-1-06	Ammonia leakage in Cargo Hold I	Various	Cargo Hold I exposed with liquid and gaseous ammonia		Leakage can be limited by cutting supply by closing valve 1 and switching to second supply line to continue operation.	C2
1-1-07	Fire in Cargo Hold I	Various	Increase in temperature and pressure within system	Pressure transmitters	Valve 1 can be closed to isolate pressure and temperature in the system. Ammonia can be released by means of the pressure relieve system after valve 1. The pressure buildup before valve 1 can be reduced by the pressure relieve system of the storage tank. Fire can be suppressed by cutting oxygen supply to cargo hold. Operation can continue by switching to second supply line.	D1

1-1-08	Flooding and ammonia leakage in Cargo Hold I	Ship collision	Cargo hold and environment exposed with liquid and gaseous ammonia		Closing valve 1 limits impact. Operation can continue by switching to second supply line.	D1
1-2-01	Ammonia leakage in Ammonia Fuel Trunk I	Various	Ammonia Fuel Trunk I exposed with liquid and gaseous ammonia	Ammonia detection	Closing valve 1 stops the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Operation can continue by switching to second supply line.	C2
1-2-02	Fire in Ammonia Fuel Trunk I	Various	Increase in temperature and pressure within system	Pressure transmitters	Closing valve 1 stops the ammonia supply. Pressure relieve system release remaining ammonia to reduce impact. Operation can continue by switching to second supply line.	C2
1-2-03	Flooding and ammonia leakage in Ammonia Fuel Trunk I	Ship collision	Ammonia Fuel Trunk I and environment exposed with liquid and gaseous ammonia	Flow and ammonia detection	Closing valve 1 limits the impact. Operation can continue by switching to second supply line.	D1
1-3-01	Completely unable to open valve 5	VMS error/bug	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A4
1-3-02	Completely unable to close valve 5	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	-	A4
1-3-03	Completely unable to (re)start pump 7	VMS error/bug	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A4
1-3-04	Completely unable to stop pump 7	VMS error/bug	Flow continuous	Flow detection	Flow can be blocked closing valve 9	A4
1-3-05	Completely unable to allow flow valve 8	Various	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A3
1-3-06	Completely unable to stop counterflow valve 8	Various	Limited counter flow in inactive pump as remainder is stopped by non return valve 29	Flow detection	Valve 6 can be closed to stop the limited counter flow	A3
1-3-07	No/Wrong measurements flow detector 10	Various		Different readings compared to other flow detectors	Other detectors can be used to verify actual measurement.	A4

1-3-08	Completely unable to supply heat heater 12	VMS error/bug	Unable to supply fuel to engine	Temperature transmitter	Switch to second supply line to continue operation.	A3
1-3-09	Completely unable to stop heat supply heater 12	VMS error/bug	Temperature and pressure increase of fuel/gaseous ammonia supply	Temperature transmitter	Switch off HRU or switch to second fuel supply line	A4
1-3-10	Complete blockage of flow and completely unable to transfer heat heat exchanger 13	Contamination	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A2
1-3-11	Leaking ammonia in HRU from heat exchanger 13	Various	Buildup of ammonia contamination in HRU	Ammonia detection	Operation can continue. Depending on the severeness operation can continue by switching to second supply line so repairs can be done immediately.	A3
1-3-12	No/Wrong measurements ammonia detector 14	Various	Wrong information ammonia leakage on single point.	Different readings compared to other ammonia detectors	Other detectors can be used to verify actual measurement.	A4
1-3-13	No/Wrong measurements temperature transmitter 15	Various	Wrong information temperature on single point.	Different readings compared to other temperature transmitters	Other temperature transmitters can be used to verify actual measurement.	A4
1-3-14	No/Wrong measurements pressure transmitter 16	Various	Wrong information pressure on single point.	Different readings compared to other pressure transmitters	Other pressure transmitters can be used to verify actual measurement.	A4
1-3-15	Unwanted opening of pressure relieve valve 17	Various		Flow detectors and pressure transmitters	Gaseous ammonia send to vent mast, supply can be cut by closing valve 5. Furthermore switch to second supply line to continue operation.	В2

1-3-16	Ammonia leakage in Ammonia Fuel Treatment Room I	Various	Ammonia Fuel Treatment Room I exposed with liquid and gaseous ammonia	Ammonia detection	Closing valve 5 and 1 stops the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Operation can continue by switching to second supply line.	C2
1-3-17	Fire in Ammonia Fuel Treatment Room I	Various	Increase in temperature and pressure within system	Pressure transmitters and fire detection system	Closing valve 1 stops the ammonia supply. Pressure relieve system release remaining ammonia and fire detection system activates fire fighting system to reduce impact. Operation can continue by switching to second supply line.	C2
1-3-18	Flooding and ammonia leakage in Ammonia Fuel Treatment Room I	Ship collision	Ammonia Fuel Treatment Room I and environment exposed with liquid and gaseous ammonia	Flow and ammonia detection	Closing valve 5 and 1 limits the impact. Operation can continue by switching to second supply line.	D1
2-1-01	No/Wrong measurements pressure transmitter 19	Various	Wrong information pressure on single point	Different readings compared to other pressure transmitters	Other pressure transmitters can be used to verify actual measurement.	A4
2-1-02	Completely unable to open valve 20	VMS error/bug	Unable to use boil-off for fuel, boil-off will be reliquefied	Flow detection	-	A4
2-1-03	Completely unable to close valve 20	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	-	A4
2-1-04	No/Wrong measurements flow detector 21	Various	Wrong information flow on single point	Different readings compared to other flow detectors	Other detectors can be used to verify actual measurement.	A4
2-1-05	Unwanted opening of pressure relieve valve 22	Various	Gaseous ammonia send to vent mast	Flow detectors and pressure transmitters	Gaseous ammonia send to vent mast, supply can be cut by closing valve 20.	B2
2-1-06	Completely unable to start compressor 24	VMS error/bug	Unable to use boil-off for fuel, boil-off will be reliquefied	Flow detection	-	A4

2-1-07	Completely unable to stop compressor 24	VMS error/bug	Flow continuous	Flow detection	Flow can be stopped by closing valve 26.	A4
2-1-08	Completely unable to allow flow valve 25	Various	Unable to use boil-off for fuel, boil-off will be reliquefied	Flow detection	-	A3
2-1-09	Completely unable to stop counterflow valve 25	Various	Limited counter flow towards inactive compressor	Flow detection	Valve 23 or 20 can be closed to stop the counter flow.	A3
2-1-10	Ammonia leakage in Compressor Room	Various	Compressor Room exposed with gaseous ammonia	Ammonia detection	Leakage can be limited by cutting supply by closing valve 20.	C2
2-1-11	Fire in Compressor Room	Various	Increase in temperature and pressure within system	Pressure transmitters	Valve 20 can be closed to isolate pressure and temperature in the system. Ammonia can be released by means of the pressure relieve system after valve 20. The pressure buildup before valve 20 can be reduced by the pressure relieve system of the storage/re-liquefaction system. Fire can be suppressed by cutting oxygen supply to cargo hold.	D1
2-2-01	Ammonia leakage in Ammonia Fuel Trunk III	Various	Ammonia Fuel Trunk I exposed with gaseous ammonia	Ammonia detection	Closing valve 20 stops the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia.	C2
2-2-02	Fire in Ammonia Fuel Trunk III	Various	Increase in temperature and pressure within system	Pressure transmitter	Closing valve 20 stops the ammonia supply. Pressure relieve system release remaining ammonia to reduce impact.	C2

2-2-03	Flooding and ammonia leakage in Ammonia Fuel Trunk III	Ship collision	Ammonia Fuel Trunk I and environment exposed with gaseous ammonia	Flow and ammonia detection	Closing valve 20 and 28 limits the impact.	D1
2-3-01	Completely unable to open valve 28	VMS error/bug	Unable to use boil-off for fuel, boil-off will be reliquefied	Flow detection	-	A4
2-3-02	Completely unable to close valve 28	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	-	A4
2-3-03	Completely unable to allow flow valve 29	Various	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A3
2-3-04	Completely unable to stop counterflow valve 29	Various	Minor amount of back flow when pump 7 is inactive as non return valve 8 will prevent continuous back flow	Flow detection	Valve 18 can be closed to stop the limited counter flow	A3
2-3-05	Unwanted opening of pressure relieve valve 30	Various	Gaseous ammonia send to vent mast	Flow detectors and pressure transmitters	Gaseous ammonia send to vent mast, supply can be cut by closing valve 28 and 5. Furthermore switch to second supply line to continue operation.	В2
2-3-06	Ammonia leakage in Ammonia Fuel Treatment Room I	Various	Ammonia Fuel Treatment Room I exposed with gaseous ammonia	Ammonia detection	Closing valve 28 and 5 or 28 and 20 stops the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Operation can continue by switching to second supply line.	C2

2-3-07	Fire in Ammonia Fuel Treatment Room I	Various	Increase in temperature and pressure within system		Closing valve 28, 20, 5 and 1 stops the ammonia supply. Pressure relieve system release remaining ammonia and fire detection system activates fire fighting system to reduce impact. Operation can continue by switching to second supply line.	C2
2-3-08	Flooding and ammonia leakage in Ammonia Fuel Treatment Room I	Ship collision	Ammonia Fuel Treatment Room I and environment exposed with gaseous ammonia	Flow and ammonia detection	Closing valve 28 and 5 or 28 and 20 limits the impact. Operation can continue by switching to second supply line.	D1
3-1-01	No/Wrong measurements flow detector 32	Various	Wrong information flow on single point	Different readings compared to other flow detectors	Other detectors can be used to verify actual measurement.	A4
3-1-02	Completely unable to open valve 33	VMS error/bug	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A4
3-1-03	Completely unable to close valve 33	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	-	A4
3-1-04	Completely unable to regulate pressure valve 34 blocking flow	VMS error/bug	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A4
3-1-05	Completely unable to regulate pressure valve 34 supplying high pressure	VMS error/bug	Too high pressure in fuel supply to engine	Pressure transmitter	Pressure relieve system releases the excess ammonia to prevent too high pressures for the engine. Switch to second supply line to continue operation.	B4
3-1-06	Unwanted opening of pressure relieve valve 36	Various	Gaseous ammonia send to vent mast	Flow detectors and pressure transmitters	Gaseous ammonia send to vent mast, supply can be cut by closing valve 33. Switch to second supply line to continue operation.	B2

3-1-07	Ammonia leakage in Ammonia Fuel Treatment Room I	Various	Ammonia Fuel Treatment Room I exposed with gaseous ammonia	Ammonia detection	Closing valve 33 or 28 and 5 stops the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Operation can continue by switching to second supply line.	C2
3-1-08	Fire in Ammonia Fuel Treatment Room I	Various	Increase in temperature and pressure within system	Pressure transmitters and fire detection system	Closing valve 33, 28, 20, 5 and 1 stops the ammonia supply. Pressure relieve system release remaining ammonia and fire detection system activates fire fighting system to reduce impact. Operation can continue by switching to second supply line.	C2
3-1-09	Flooding and ammonia leakage in Ammonia Fuel Treatment Room I	Ship collision	Ammonia Fuel Treatment Room I and environment exposed with gaseous ammonia	Flow and ammonia detection	Closing valve 33 or 28 and 5 limits the impact. Operation can continue by switching to second supply line.	D1
3-2-01	Shut down/failure main engine 38	Various	Loss of power for propulsion and PTO	VMS	Likelihood too low for additional mitigation.	E2
3-2-02	Ammonia leakage in Engine Room (single penetration)	Various	Pressure increase in double walled piping in Engine Room due to entrance of gaseous ammonia	Pressure transmitter	Close valve 33 and switch to second supply line to continue operation.	A3
3-2-03	Ammonia leakage in Engine Room (double penetration)	Various	Engine Room exposed with gaseous ammonia	Pressure transmitter and ammonia detection	Closing valve 33 stops the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia. Operation can continue by switching to second supply line.	C2

3-2-04	Fire in Engine Room	Various	Increase in temperature and pressure within system	Fire detection	Fire detection activates fire fighting system to reduce impact. Close remote operated valves if needed. Trapped ammonia with closed valves is released by means of pressure relieve valves.	C4
3-2-05	Flooding and ammonia leakage in Engine Room	Ship collision	Engine room and environment exposed with gaseous ammonia	Flow and ammonia detection	Closing valve 33 limits the impact. Operation can continue by switching to second supply line.	D1
4-1-01	No/Wrong measurements flow detector 40	Various	Wrong information flow on single point	Different readings compared to other flow detectors	Other detectors can be used to verify actual measurement.	A4
4-1-02	Completely unable to supply heat heater 41	VMS error/bug	Unable to supply fuel to engine	Temperature transmitter	Switch to second supply line to continue operation.	A3
4-1-03	Completely unable to stop heat supply heater 41	VMS error/bug	Temperature and pressure increase of fuel/gaseous ammonia supply	Temperature transmitter	Switch off HRU or switch to second fuel supply line	A4
4-1-04	Complete blockage of flow and completely unable to transfer heat heat exchanger 42	Contamination	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A2
4-1-05	Leaking ammonia in HRU from heat exchanger 42	Various	Buildup of ammonia contamination in HRU	Ammonia detection	Operation can continue. Depending on the severeness operation can continue by switching to second supply line so repairs can be done immediately.	A3
4-1-06	No/Wrong measurements ammonia detector 43	Various	Wrong information ammonia leakage on single point.	Different readings compared to other ammonia detectors	Other detectors can be used to verify actual measurement.	A4
4-1-07	No/Wrong measurements temperature transmitter 44		Wrong information temperature on single point.	Different readings compared to other temperature transmitters	Other temperature transmitters can be used to verify actual measurement.	A4

4-1-08	No/Wrong measurements pressure transmitter 45	Various	Wrong information pressure on single point.	Different readings compared to other pressure transmitters	Other pressure transmitters can be used to verify actual measurement.	A4
4-1-09	Complete blockage of flow and completely unable to accelerate ammonia cracking catalyst 46	Contamination	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A2
4-1-10	Completely unable to open valve 49	VMS error/bug	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A4
4-1-11	Completely unable to close valve 49	VMS error/bug	Flow is stopped by inactive equipment in supply line	-	-	A4
4-1-12	Completely unable to regulate pressure valve 50 blocking flow	VMS error/bug	Unable to supply fuel to engine	Flow detection	Switch to second supply line to continue operation.	A4
4-1-13	Completely unable to regulate pressure valve 50 supplying high pressure	VMS error/bug	Too high pressure in fuel supply to engine	Pressure transmitter	Pressure relieve system releases the excess ammonia to prevent too high pressures for the engine. Switch to second supply line to continue operation.	Β4
4-1-14	Unwanted opening of pressure relieve valve 52	Various	Gaseous ammonia send to vent mast	Flow detectors and pressure transmitters	Gaseous ammonia send to vent mast, supply can be cut by closing valve 49. Switch to second supply line to continue operation.	В2
4-1-15	Ammonia & hydrogen leakage in Ammonia Fuel Treatment Room I	Various	Ammonia Fuel Treatment Room I exposed with gaseous ammonia & hydrogen	Ammonia and hydrogen detection	Closing valve 49 or 28 and 5 stops the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia and hydrogen. Operation can continue by switching to second supply line.	C2

4-1-16	Fire in Ammonia Fuel Treatment Room I	Various	'	Pressure transmitters and fire detection system	Closing valve 49, 28, 20, 5 and 1 stops the ammonia and hydrogen supply. Pressure relieve system release remaining ammonia and fire detection system activates fire fighting system to reduce impact. Operation can	C2
	Flooding and ammonia &				continue by switching to second supply line. Closing valve 49 or 28 and 5	
4-1-17	hydrogen leakage in piping in Ammonia Fuel Treatment Room I	Ship collision	Ammonia Fuel Treatment Room I and environment exposed with gaseous ammonia & hydrogen	Flow, ammonia and hydrogen detection	limits the impact. Operation can continue by switching to second supply line.	D1
4-2-01	Ammonia and hydrogen leakage in Engine Room (single penetration)	Various	Pressure increase in double walled piping in Engine Room due to entrance of gaseous ammonia and hydrogen	Pressure transmitter	Close valve 53 and switch to second supply line to continue operation.	A3
4-2-02	Ammonia and hydrogen leakage in Engine Room (double penetration)	Various		Pressure transmitter, ammonia and hydrogen detection	Closing valve 53 stops the leakage. Ventilation reduces the impact of the limited amount of spilled ammonia and hydrogen. Operation can continue by switching to second supply line.	C2
4-2-03	Fire in Engine Room	Various	Increase in temperature and pressure within system	Fire detection	Fire detection activates fire fighting system to reduce impact. Close remote operated valves if needed. Trapped ammonia and hydrogen, with closed valves, is released by means of pressure relieve valves.	C4

4-2-04	Flooding and ammonia and hydrogen leakage in Engine Room	Ship collision	lexposed with gaseous ammonia	Flow, ammonia and hydrogen detection	Closing valve 49 limits the impact. Operation can continue by switching to second supply line.	D1
5-1-01	Overall blackout	Warious	Shut down of all systems and	Likelihood too low for additional mitigation.	Likelihood too low for	D2
			closing of valve 1, 20 and 54		additional mitigation.	