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Travel Effects and Associated Greenhouse Gas Emissions 
of Automated Vehicles 

EXECUTIVE SUMMARY 

In much the same way that the automobile disrupted horse and cart transportation in the 20th 
century, automated vehicles hold the potential to disrupt our current system of transportation 
and the fabric of our built environment in the 21st century. Experts predict that vehicles could 
be fully automated by as early as 2025 or as late as 2035 (Underwood, 2015). The public sector 
is just beginning to understand automated vehicle technology and to grapple with how to 
accommodate it in our current transportation system.   
 
Research on automated vehicles is extremely important because automated vehicles may 
significantly disrupt our transportation system with potentially profound effects, both positive 
and negative, on our society and our environment. However, this research is very hard to do 
because fully automated vehicles have yet to travel on our roads. As a result, automated 
vehicle research is largely conducted by extrapolating effects from current observed behavior 
and drawing on theory and models. Both the magnitude of the mechanism of change and 
secondary effects are often uncertain. 
 
Moreover, the potential for improved safety in automated vehicles drive the mechanisms by 
which vehicle miles traveled (VMT), energy, and greenhouse gas (GHG) emissions may change. 
We really don’t know whether automated vehicles will achieve the level of safety that will allow 
for completely driverless cars, very short headways, smaller vehicles, lower fuel use, and/or 
reduce insurance cost. We don’t know whether automated vehicle fleets will be harmonized to 
reduce energy and GHG emissions. 
 
In this white paper, the available evidence on the travel and environmental effects of 
automated vehicles is critically reviewed to understand the potential magnitude and likelihood 
of estimated effects. We outline the mechanisms by which automated vehicles may change 
travel demand and review the available evidence on their significance and size. These 
mechanisms include increased roadway capacity, reduced travel time burden, change in 
monetary costs, parking and relocation travel, induced travel demand, new traveler groups, and 
energy effects. We then describe the results of scenario modeling studies. Scenarios commonly 
include fleets of personal automated vehicles and automated taxis with and without sharing. 
Travel and/or land use models are used to simulate the cumulative effects of scenarios. These 
models typically use travel activity data and detailed transportation networks to replicate 
current and predict future land use, traffic behavior, and/or vehicle activity in a real or 
hypothetical city or region. The findings from this white paper are summarized in the text and 
in Table A below.  
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• Road Capacity: Safety improvements from automated vehicles could significantly 

reduce headways on roadways and the results could be an almost doubling or tripling of 

capacity. These findings are based on a limited number of microsimulation studies that 

draw on traffic flow theory. Only one study uses field data. However, there is a relatively 

strong body of literature on the induced travel effects of roadway capacity on VMT. This 

literature suggests that the elasticity of VMT with respect to road capacity is 0.3 to 0.6 

(short run) and 0.6 to 1.0 (long run). Thus, if roadway capacity increases by 10% then 

VMT may increase by 3% to 6% in the short run and 6% to 10% in the long run. 

• Time Costs: The ability to engage in other activities while traveling in an automated 

vehicle may reduce the time burden of travel. Potential reductions in the value of travel 

time from automated vehicles are largely extrapolated from the results of stated 

preference surveys of car passengers and rail passengers, which may or may not be 

transferable to the experience of automated vehicle passengers. The results of these 

studies vary widely, but 75% to 82% of current driver values of time may be reasonable. 

Studies also indicate that working may not be a common use of time for those traveling 

in automated vehicles. 

• Monetary Costs: Safety improvements in automated vehicles may lower vehicle 

insurance costs. Reductions in fuel costs could be enabled from lighter vehicles, lower 

time costs of refueling electric vehicles, and harmonization of vehicle flows. Avoided 

labor cost could enable fleets of automated taxis and shared taxi with user costs lower 

than personal vehicles. The magnitude of cost reductions is largely speculative, and few 

peer reviewed studies evaluate these effects. Reduced monetary costs of vehicle travel 

would tend to increase VMT. The body of literature on the effect of gas prices, which is 

the largest component of variable cost for conventional vehicles, on VMT is relatively 

strong. Elasticity of VMT with respect to gas price is -0.03 to -0.10 (short run) and -0.13 

to -0.30 (long run). Thus, if gas price is reduced by 10% then VMT may increase by 0.3% 

to 1% in the short run and 1.3% to 3% in the long run. Only one study in New York City 

estimates the elasticity of taxi trips with respect to fares at -0.22, which may be 

applicable to automated taxi fleets (i.e., if fares increased by 10% then taxi trips would 

be reduced by 2.2%). 

• Mode Choice: Available research suggests that automated vehicles would reduce transit 

and non-motorized mode shares and increase car mode shares. The limited available 

research on this subject confirms expected direction change, but magnitude is highly 

uncertain due to study quality. 

• Empty Vehicle Relocation Travel: Automated vehicles may travel while empty to pick up 

passengers and to avoid parking where it is scarce or costs are high. The limited 

research on this topic shows that empty relocation travel is positively correlated with 

distance from the urban core, the price of parking, and per mile user costs, and is 
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inversely correlated with ride-sharing and transit. Empty relocation travel may 

contribute significantly to VMT effects of automated vehicles; however, studies do not 

fully represent induced travel effects and thus may overestimate the relative 

importance of this effect. U.S. studies are simulated only in Austin (TX). 

• Parking: There are very few studies that evaluate the effect of automated vehicles on 

parking. Three simulation studies (one in the U.S. and two in the E.U.) suggested that 

automated taxis may reduce parking demand by about 90%.  

• New Travelers: Automated vehicles may allow many people to engage in car travel who 

cannot now drive a vehicle because of young-age and/or medical disabilities. Also, if 

shared automated taxis provide travel at a cost lower than current costs, then many 

lower income people who do not have access to a reliable car may also begin traveling 

more by car. Only a few studies evaluate the potential magnitude of this effect by 

extrapolating from 2009 NHTS Household Travel Survey data. Most studies estimate an 

increase in VMT on the order of 10% to 14%. However, the magnitude of effects is 

based largely on study assumptions.  
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Table A. Summary of White Paper Findings and Quality of Evidence 

Mechanisms Summary of Findings  Quality of Evidence 

Road 
Capacity  

 

Reduced headways could almost double or 
triple roadway capacity. Elasticity of VMT 
with respect to road capacity increase is 0.3 
to 0.6 (short run) and 0.6 to 1.0 (long run).  

Limited research largely uses microsimulation 
traffic models. More measured data needed. 
The body of literature on the effect of 
expanded road capacity and VMT is relatively 
strong. 

Time Cost Vary widely, but 75% to 82% of current 
driver values of time may be reasonable. 
Working may not be a common use of time 
for AV passengers.  

Studies largely extrapolate from car passenger 
and rail passenger experiences, which may or 
may not be consistent with the experience of 
automated vehicle travelers.  

Monetary 
Cost 

Reduced monetary cost from lower 
insurance and fuel costs. Avoided labor cost 
could enable fleets of AV taxis and shared 
taxi with use costs lower than personal 
vehicles. Elasticity of VMT with respect to 
gas price is -0.03 to -0.10 (short run) and -
0.13 to -0.30 (long run). Elasticity of taxi 
trips with respect to fares is -0.22.  

The magnitude of cost reductions is largely 
speculative, and few peer reviewed studies 
evaluate these effects. The body of literature 
on the effect of gas prices on VMT is relatively 
strong. Gas price is the largest component of 
the variable cost of driving a conventional 
owned vehicle. Only one study in New York 
City estimates taxi fare elasticity.  

Mode 
Choice 

Available research suggests that AVs would 
reduce transit and non-motorized and 
increase car mode shares.  

Limited research confirms expected direction 
change, but magnitude is highly uncertain due 
to study quality. 

Parking Fully AV taxis may reduce parking demand 
by about 90%. However, reduced parking 
may increase relocation travel. 

Only one U.S. study that uses observed travel 
data. Two other studies are in European cities. 
All studies use simulation models. 

Empty 
Relocation 
Travel 

Empty relocation travel is positively 
correlated with distance from the urban 
core, the price of parking, and per mile user 
costs, and inversely correlated with ride-
sharing and transit. Empty relocation travel 
may contribute significantly to VMT effects 
of automated vehicles. 

Limited research confirms expected direction 
change, but magnitude is highly uncertain. 
The share of relocation travel with respect to 
total VMT may be significant; however, 
studies do not fully represent induced travel 
effects and thus may overestimate the 
relative significance of this effect.  

New 
Travelers 

Most studies estimate an increase in VMT 
on the order of 10% to 14%.  

Extrapolations use 2009 National Household 
Travel Survey data. Magnitude of effects are 
based largely on study assumptions. 

AV=automated vehicles 

 
 

In sum, this review suggests that personal automated vehicles and automated taxis are likely to 
significantly increase VMT and GHG and eliminating parking could exacerbate these increases. 
Electrifying the automated vehicle fleet could counter GHG growth, but will likely reduce 
vehicle operating costs and further increase VMT and congestion. Shared automated vehicle 
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taxis could significantly reduce VMT and GHGs, but pricing polies are likely needed to get 
people to share. City center congestion could increase with significantly higher freeway 
capacity, which could result in urban flight and suburban sprawl in outlying areas that are 
relatively less congested. Policies to counter these trends could include (1) reinvesting in heavy 
rail transit to city centers with expanded first and last mile access in suburban areas by 
providing by automated vehicle shuttles and (2) cordon pricing around city centers to reduce 
congestion, make neighborhoods livable, and avoid sprawl.  
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Introduction 

In much the same way that the automobile disrupted horse and cart transportation in the 20th 
century, automated vehicles hold the potential to disrupt our current system of transportation 
and the fabric of our built environment in the 21st century. Experts predict that vehicles could 
be fully automated by as early as 2025 or as late as 2035 (Underwood, 2015). The public sector 
is just beginning to understand automated vehicle technology and to grapple with how to 
accommodate it in our current transportation system. The manner in which automated vehicles 
are integrated into our regional transportation systems could have significant negative and 
positive effects on congestion, vehicle miles traveled (VMT), greenhouse gas emissions (GHGs), 
energy consumption, and land development patterns. For example, one study estimates that 
automated vehicles could double GHG emissions and energy consumption or reduce it by 50%, 
depending on the magnitude of different travel demand effects (Wadud et al., 2016).  
 
Understanding the potential impacts of automated vehicles is critical to guiding their adoption 
in ways that improve multi-modal accessibility for all citizens and minimize negative 
environmental effects. The challenge, of course, is that fully automated vehicles have not yet 
been introduced into the transportation system and thus observed data is not available on how 
travelers will adopt and respond.   
 
In this white paper, the available evidence on the travel and environmental effects of 
automated vehicles is critically reviewed to understand the potential magnitude and likelihood 
of estimated effects. In section II, we outline the mechanisms by which automated vehicles may 
change travel demand and review the available evidence on their significance and size. These 
mechanisms include increased roadway capacity, reduced travel time burden, change in 
monetary costs, parking and relocation travel, induced travel demand, new traveler groups, and 
energy effects. In section III, we describe the results of scenario modeling studies. Scenarios 
commonly include fleets of personal automated vehicles and automated taxis with and without 
sharing that are fully operational without a driver (i.e., level 5 automation). Travel and/or land 
use models are used to simulate the cumulative effects of scenarios. These models typically use 
travel activity data and detailed transportation networks to replicate current and predict future 
land use, traffic behavior, and/or vehicle activity in a real or hypothetical city or region. In 
section IV, the results of the review are synthesized to identify the magnitude and strength of 
the evidence for the effects, lessons learned, and research gaps. 
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Mechanisms for Changing Travel Demand 

Increased Roadway Capacity 

Safety improvements from automated vehicles are expected to increase effective roadway 
capacity by enabling smaller vehicles and shorter headways and by reducing time delays due to 
accidents and improved operations. Automated taxi and shared taxi services could also enable 
“right sizing” of vehicles to passenger occupancy.  
 
Overall, the results of modeling and field studies, which largely consider reduced headways 
between automated vehicles, indicate that a fully automated vehicle fleet could approximately 
double or triple the effective capacity of existing roadways. Shladover et al. (2012) conduct field 
tests and microsimulation modeling of connected automated vehicles at differing levels of 
market penetration and find increases in roadway capacity due to connected automated 
vehicles that range from 5% to 89%. Ambühl et al. (2016) use a mesoscopic model (VISSIM) to 
simulate an autonomous vehicle fleet with a simplified car following model, in which headways 
are reduced from two seconds for conventional vehicles to one half a second, on an abstract 
four by four gridded network (with 24 road links that are 120 meters long and two lanes in each 
direction) and report that the effective capacity of the network could be tripled by an 
automated vehicle fleet. Lioris et al. (2017) apply three queuing models to simulate automated 
vehicles with headways of three fourths of a second on an urban network with 16 intersections 
and 73 links. They show that both roadways and intersections can accommodate a doubling 
and tripling of roadway capacity with connected automated vehicles. In other words, 
intersections would not act as a bottleneck in a roadway network that served automated 
vehicles.  
 

Reduced Travel Time Burden 

Passengers in fully automated vehicles would be free to use in-vehicle travel time to work and 
“play” in their vehicle. As a result, the burden of travel time may be lessened. Note, however, 
that this dynamic could lead to increased vehicle size and weight due to equipment needed to 
engage in desired tasks. To date, the research that addresses this topic is limited in quantity 
and is inconclusive due to methodological challenges. The results of this research are 
summarized here.  
 
Ian Wallis Associates (2014) review the literature on the value of time of vehicle drivers 
compared to vehicle passengers. They find only five studies that directly address this issue and 
only one of these studies control for individual socio-demographic differences, such as income 
and age. In one U.K. study, the results of a stated preference and transfer price surveys1 of 
vehicle drivers and passengers indicate that the average ratio for passenger value of time 
compared to driver value of time is 63% for commuter travel, 75% for other travel, and 78% for 

                                                      
1 Stated preference surveys ask respondents to choose among different hypothetical options and experiment 
methods are typically employed to generate hypothetical choices. Transfer price surveys present hypothetical 
choices in relation to an existing or actual situation experienced by respondents. 
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business travel (Hague Consulting Group, 1999 cited in Ian Wallis Associates, 2014). A study 
conducted in Australia, which employs a stated preference survey, finds that the value of travel 
time for passengers is 75% of drivers (Hensher, 1984 cited in Ian Wallis Associates, 2014). The 
results of stated preference and transfer price surveys administered in Sweden indicate no 
significant difference between passenger and driver value of travel time (cited in Ian Wallis 
Associates, 2014). In Denmark, a stated preference survey shows that passenger value of travel 
time is 67% that of driver value of travel time, but when value of travel time is adjusted for 
income the value is 82% (Fosgerau et al., 2007 cited in Ian Wallis Associates, 2014). This study 
did not detect significant differences in value of travel time by trip purpose. The results of 
revealed2 and stated preference surveys in Spain indicate that passenger value of time is 82% of 
the driver for work/education trips and 69% for all other trip purposes (Roman et al., 2007 cited 
in Ian Wallis Associates, 2014).  
 
Studies that examine rail passengers’ value of time spent on activities while traveling provide 
some insight into potential travel time benefits of automated vehicles. A survey of rail 
passengers in the U.K. indicates that only 13% of passengers engage in work or study while 
traveling, 98% of those passengers rate the time spent on those activities as of some use (59%) 
or very worthwhile (39%), and 62% to 85% of all passengers rate different non-work activities 
as of some use or very worthwhile (Lyons et al., 2007). Another study in the U.K., which uses 
revealed preference and stated preference surveys, finds that train travelers engage in a wider 
range of activities than car travelers and, on average, about 66 minutes were spent on work 
related activities by train passengers while only 6 minutes were spent on work related activities 
by car travelers (Batley et al., 2010). More recently, Malokin et al. (2015) conduct a revealed 
preference survey of commuters in the San Francisco-Sacramento transportation corridor in 
Northern California and extrapolate travel time benefits from productive time use during 
commuter rail and shared ride travel to estimate changes in commuter mode share for a 
hypothetical automated vehicle scenario. The results indicate that the drive alone mode share 
increases by 0.95 percentage points and shared ride mode share increases by 1.08 percentage 
points. However, one on-line survey, the results of which are stratified by gender, age, and 
income to closely represent the general population, finds that window gazing and relaxing is a 
more highly valued use of time than working in automated vehicles (Cyganski et al., 2015). 
However, Le Vine et al. (2015) question the equivalence of traveling in an automated vehicle 
and in a train due to differences in acceleration and deceleration dynamics, which have been 
found to impact travelers’ comfort. They estimate that these dynamics are significantly worse 
in automated vehicles based on a microsimulation analysis. 
 
A few surveys have been conducted that explore the factors that may motivate consumers to 
purchase an automated vehicle; however, the samples of these surveys are typically not 
representative of the general population in a specific geographic area. Bansal and Kockelman 
(2016) conduct an internet based opinion survey and report that a significant number of 
respondents find the ability to engage in other tasks would contribute positively to purchasing 

                                                      
2 Revealed preference surveys ask respondents questions about actual situations they experience 
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an automated vehicle. These include texting or talking (74%), sleeping (52%), working (54%), 
and watching movies or playing games (46%). Menon et al. (2016) administer a survey to a 
university population in South Florida and find that 73% of respondents believe that more 
productive (than driving a conventional vehicle) use of travel time is a likely benefit of automated 

vehicles. On the other hand, Schoettle and Sivak’s (2014a) internet-based survey of individuals in 
the U.K., the U.S., and Australia finds that 41% of respondents would continue watching the 
road even as passenger in an automated vehicle.   
 

Change in Monetary Costs 

Attributes of automated vehicle will tend to reduce the variable per mile cost of operating a 
vehicle. The improved safety of automated vehicles should reduce insurance costs, which are 
about 3.3 cents per mile by about 60% to 80% (Wadud et al., 2016). It should also reduce the 
weight of the vehicle due to safety features. MacKenzie et al. (2014) estimate that removing 
this weight could reduce fuel consumption by 5.5%. Moreover, automated vehicles may be 
more likely to be electric vehicles because the vehicle can be recharged without time costs to a 
driver. Electricity is significantly less expensive than gasoline use in conventional vehicles (about 
50% less).  
 
No longer will passengers have to pay the labor costs for taxi or ride-hail services (shared and 
unshared) and transit. As these modes become more affordable, they may be deployed beyond 
dense urban areas to suburban and rural environments and to provide first and last mile service 
to rail transit. Chen et al. (2016) estimate that automated electric vehicle taxis could be 
operated at a cost of 42 cents per mile (including the cost of charging infrastructure, vehicle 
capital and maintenance, electricity, insurance, and registration), which is equivalent to owning 
a vehicle with lower than average mileage. The per mile cost of shared automated electric taxis 
would be even less.  
 
As described above, automated taxi’s may facilitate “right-sizing” of vehicles, which could 
further reduce the energy requirements and cost of operations; however, it is difficult to 
estimate the magnitude of this potential benefit (Wadud et al., 2016).  
 
Shared automated services could also significantly impact fleet size as the cost of automated 
taxis with and without sharing could become significantly less than the cost of a personally 
owned automated vehicles (Burns et al., 2013). Many studies, see discussion in the next 
section, show that large reductions in the vehicle fleet may be made possible through shared 
use mobility service.    
 

Parking and Relocation Travel 

Automated vehicles may significantly reduce parking demand. Personal automated vehicles 
could drop off their passengers and return home to park. Automated taxis and shared 
automated taxis could drop off passengers and then be relocated to pick up other passengers. 
A shared fleet would be smaller than a personal vehicle fleet and thus would require less total 
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spaces even when they are not in use for extended hours of the day during non-peak times. 
Parking could be located at strategic locations throughout a region rather than located at or 
near a baseness or home. Zhang and Guhathakurta (2017) simulate parking demand for a fleet 
of autonomous taxis in Atlanta (GA) and find that land devoted to parking could be reduced by 
4.5% once the fleet began to serve 5% of trips and could reduce 67% of parking lots in the 
central business district (CBD). Martinez and Christ (2015) simulate a fleet of automated taxis 
(100% market penetration) with and without sharing and transit, in Lisbon, Portugal, and find 
an 84% to 94% reduction in parking. At 50% market penetration levels, the share of baseline 
parked vehicles is only significantly reduced with transit by 21% to 24%(respectively with and 
without sharing). Another study (de Alameidia Correla and van Arem, 2016) in Delft, 
Netherlands, simulates fully automated personal vehicles (100% market penetration) and finds 
that vehicles spend more time parking (16% and 19%) when parking charges decrease and less 
time parking (7% to 24%) when parking charges increase (see more detailed discussion of this 
study in section III below).  
 
The potential magnitude of relocation travel is discussed in more detail in section III below; 
however, we briefly summarize the results here. Two studies simulate personal vehicles that 
are fully automated with 100% market penetration. A study in downtown Austin (TX) finds that 
relocation travel is 83% of total VMT (Levin and Boyles, 2015). The study in Delft (described 
above) found a that relocation travel as a share of total VMT can range from 10% to 87% with a 
positive correlation between the price of parking and relocation travel (de Alameidia Correla 
and van Arem, 2016). Total VMT increases in this study and relocation travel is a significant 
factor when pricing charges are relatively low.  
 
A number of studies estimate the effect of fully automated taxis on relocation travel. 
Maciejewski and Bishoff (2016) simulate automated taxis in Berlin, Germany, at different levels 
of market penetration and find that the share of relocation travel ranges from 17% to 19% of 
total VMT with higher levels associated with lower levels of market penetration. Bischoff and 
Maciejewski (2016) simulate automated taxis in Berlin and examine the share of empty vehicle 
trips by location and find that the share is at least 6% lower than the regional average in the city 
center and 6% to 29% higher in outlying areas of the region. Bischoff and Maciejewski (2017) 
show that relocation travel is 13% to 20% of VMT for an automated shared taxi scenario, 
depending on assumptions about roadway capacity expansion from automation; however, 
overall VMT declines by 15% to 22% due to sharing rides. Chen and Kockelman (2016) simulate 
an electric automated taxi service that competes with other modes based on per mile use cost 
in a hypothetical Austin-like city. They find that relocation travel varies from 7% to 9%, 
depending on assumptions about value of travel time and per mile user costs. Average trip 
distances increase from 20% to 35% when overall costs (value of time and user costs) are 
relatively low and decrease from 3% to 4% when overall costs are relatively high. 
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Induced Travel 

Induced travel is the increase in auto travel that results from a reduction in the cost of auto 
travel. As described above, automated vehicles may reduce the cost of auto travel by increasing 
effective roadway capacity and thus auto travel speeds, decreasing the value of time costs of 
auto travel through the ability to engage in other tasks instead of driving, and reducing the 
monetary cost of auto travel through lower parking, fuel, and insurance costs and more 
efficient use of vehicles.  
 
Induced travel effects can be broken down into four basic components. If the cost of auto travel 
declines, all else being equal, then auto travel becomes more cost-effective relative to other 
modes of travel (e.g., transit, walk, and bike) and thus auto mode share is likely to increase. 
Individuals may also decide to travel to more preferred destinations that are further way than 
less preferred destinations. For example, a traveler may decide to go to a regional mall that is 
15 miles away with 50 stores compared to a local mall that is 2 miles away with only 10 stores. 
Travelers may also decide to make more discretionary trips and/or engage in less trip chaining 
due to reduced auto travel costs. Finally, over the long run significant changes in auto travel 
time and cost may affect land use development and population location. Reduced travel time 
costs may make commuting to work from lower cost housing developments in outlying areas of 
a region feasible. Businesses may follow as populations relocate further away from city centers.     
 
The evidence for induced travel is strong (Handy et al., 2014). Studies typically calculate 
elasticities which are equal to a one percent increase in vehicle travel demand over a one 
percent change in travel cost. Handy et al. (2014) conduct a critical review on the effects of 
expanded roadways on induced VMT and find that short run effects typically range from 0.3 to 
0.6 and long run effects from 0.6 to 1.0. Short run effects are changes in mode, destination, and 
trips while long run effects include land use effects. Studies of the effect of reduced travel time 
on vehicle travel indicate short run effects have elasticities that range from -0.27 to -0.5 and 
long run effects range from -0.57 to -1.0 (Preston et al., 1997 and Goodwin, 1996). Recent 
studies of the elasticity of VMT with respect to gas price show short run elasticities that range 
from -0.03 to -0.10 and long run elasticities that range from -0.13 to -0.30 (Circella et al., 2014). 
Only one study estimates the elasticity of demand for taxi trips with respect to fares in New 
York City (Shaller, 1999) and finds that the elasticity is -0.22. 
 

New Travelers  

Fully automated vehicles could increase mobility for older adults, people with disabilities, 
young people without driver’s licenses, and people living in poverty. The ability of these 
mobility-limited population groups to travel in automated vehicles, all things being equal, 
would tend to increase vehicle travel. Our review of the literature identified only four studies 
that attempt to quantify the magnitude of this increase. 
 
Sivak and Schoettle (2014) conduct an on-line survey of young people (age 18 to 39) without a 
driver’s license and ask the primary reason why they did not have a driver’s license. The 
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distribution of respondents without a driver’s license aged 18 to 39 is consistent with that of 
the U.S. population (Schoettle and Sivak, 2014b). They find that four of these reasons would be 
eliminated by the availability of fully automated vehicles: too busy, disability, lack of driving 
knowledge, and legal issues. If respondents indicate one of those four reasons, then it is 
assumed that they would travel in a fully automated vehicle. The increase in total vehicle users 
was estimated by age group. These figures are then applied to the 2009 National Household 
Travel Survey (NHTS) data to estimate a 10.6% total average increase in annual VMT with fully 
automated vehicles for the U.S. population aged 18 to 39.  
 
Brown et al. (2015) use data from the 2009 NHTS and the 2003 “Freedom to Travel Study” to 
estimate the increase in travel for youth, elderly, and disabled populations. They apply the 
travel rate of the top age decile (40 years old) to population segments from age 16 to 85. They 
estimate a total increase of 40% VMT per vehicle due to the availability of fully automated 
vehicles.  
 
Wadud et al. (2016) use the 2009 NHTS to estimate the increase vehicle travel among those 
aged 62 and older that may result from the introduction of fully automated vehicles. Their 
analysis applies the driving rates of those aged 62 to everyone older than 62. The results 
indicate a 2% to 10% increase in VMT.   
 
Harper et al. (2016) use data from the 2009 NHTS to estimate the potential increase in VMT by 
non-drivers, seniors (65 years and older), and individuals with travel-restrictive medical 
conditions. The study assumes that, with fully automated vehicles, non-drivers will use vehicles 
at the same rate as drivers, seniors will drive at the same rate as those under 65, and that 
working age adult drivers (19-64) with travel-restrictive medical conditions will travel at the 
same rate as working age adult drivers without medical conditions. They estimate a 14% 
increase in annual VMT for the U.S. population aged 19 and older. 
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Scenario Modeling 

Route Choice Modeling and Empty Relocation Travel 

The immediate effects of automated taxis and shared taxis (level 4 automation) are 
summarized in Table 1. The immediate effects of these modes are simulated with dynamic 
route choice models that represent the empty repositioning travel necessary to pick up and 
drop off passengers. Dynamic traffic assignment (DTA) route choice models are widely 
considered to do a better job of representing the interaction of vehicles and resulting traffic 
flows compared to static assignment (SA) models. Increased roadway capacity would tend to 
reduce congestion and allow drivers to take more direct routes to destinations, which could 
reduce VMT.   
 
Early studies of automated taxis in the U.S. simulate travel for small downtown areas in 
hypothetical U.S. cities that are similar to Austin (TX) and Atlanta (GA) (Faganant and 
Kockelman, 2014 and Zhang et al., 2015, respectively). Travel demand is randomly generated 
with limited reference to national observed travel demand (e.g., 2009 NHTS data). The physical 
representation of these cities includes 10-mile by 10-mile gridded areas, but no physical 
representation of roadway networks. As a result, automated taxis are simulated with constant 
peak and off-peak travel speeds for a typical weekday.  
 
Faganant and Kockelman (2014) simulate an automated taxi fleet in the Austin-like city and find 
that one automated taxi could replace 10 personally owned vehicles. However, this smaller 
fleet would increase VMT by about 11%. Life-cycle energy and emission effects are also 
calculated using estimates of VMT, fleet size, parking, and vehicle starts for base and 
automated taxi scenarios and show reductions in energy use by 12%, GHG by 6%, volatile 
organic compounds (VOC) by 49%, and carbon monoxide (CO) by 34%. Note that VOC and CO 
emission are strongly influenced by vehicle cold starts, which are significantly reduced in the 
automated taxi scenario. 
 
Zhang et al. (2015) compare automated taxi scenarios with and without sharing in their Atlanta-
like city. The study assumes that only 50% of travelers will be willing to share a ride with 
strangers and that the cost and time delay of sharing will be compensated for by lower cost of 
traveling. They find that one shared automated taxi could replace 14 personally owned 
vehicles. Relative to the automated taxi scenario, a fleet of shared automated taxis would 
reduce relocation travel and total VMT by about 5% and 6%, respectively, and reduce daily and 
peak delays by about 13% and 37%, respectively. Longer vehicle downtime in the shared 
automated taxi scenario contributes to a 10% increase in chargeable breaks for electric 
automated taxis but it also increases cold starts by 7%. The authors also find that change in 
vehicle fleet could reduce parking by 92.5%. Lifecycle energy and emissions impacts of the 
automated taxi with and without sharing are compared to a base case with conventional 
vehicles. The analysis considers VMT and reductions in parking infrastructure requirements. The 
results show no difference between the automated taxi scenarios with and without sharing and 
reductions of less than 1% compared to the base case.  
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Later studies conducted by Faganant, Kockelman, and others (Fagnant et al., 2015 and Faganant 
and Kockelman, 2016) improve their representation of daily travel in Austin (TX) by increasing 
the size of the core city to a 12-mile by 24-mile area, using a roadway network with link-level 
travel times, and using origin and destination travel demand data from the regional 
Metropolitan Planning Organization’s (MPO’s) four step model. They also use the MATSim 
dynamic assignment model (Horni et al., 2016). The results from the improved modeling of the 
automated taxi fleet in Fagnant et al. (2015) show lower increases in VMT (8%), somewhat 
higher automated vehicle to conventional vehicle replacement rates (1 to 11), and improved 
energy use and GHG reductions, 14% and 7.6%, respectively using the same methodology in 
Faganant and Kockelman (2014). The increase in VMT in the shared automated taxi ranged 
from 17% to 52% of the increase for the automated taxi scenario.  
 
Bishoff and Maciejewski (Maciejewski and Bischoff, 2016; Bischoff and Maciejewski, 2016; and 
Bishoff et al., 2017) examine automated taxis and shared taxis in Berlin, Germany with the 
MATSim modeling framework, which includes a dynamic assignment model with vehicle 
relocation capabilities. The model uses local travel behavior data to dynamically schedule 
automated vehicle fleets for an average weekday (Maciejewski et al., 2017). Maciejewski and 
Bischoff (2016) simulate different levels of market penetrations for automated taxis (20% to 
100%). They find an automated vehicle to conventional vehicle replacement rate of 1 to 11 or 
12 vehicles and that the share of empty drive time to total drive time ranges from 17% to 19%. 
The percentage change in travel time delay ranges widely from -71% to +173% depending on 
the changes in roadway capacity due to automated vehicle technology (i.e., equal to 1, 1.5, and 
2.0 of current capacity), as discussed above. Bischoff and Maciejewski, 2016 examine the share 
of empty ride per zones from an automated taxi service at 100% market penetration. They find 
that the city average is 16%, but in the city center it is much lower (10% or less) and in outlying 
areas it is much higher (22% to 45%). Bishoff et al., 2017 simulate a fleet of automated taxis 
with and without sharing. The MATSim model uses GPS trace data for 15,000 taxis collected 
over a period of 4.5 months. Relative to the automated taxi fleet, they find that shared taxis can 
reduce VMT by 15% to 22% and that the share of empty relocation VMT to total VMT ranges 
from 13% to 20%. 
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Table 1. Summary of Route Choice and Empty Relocation Travel Scenario Modeling Studies 

Author(s) Location Method Travel Effects Time 
Period 

AV Scenario (compared to 
conventional vehicles 

unless specified) 

Fleet (% of 
conventional 

vehicles) 

Relocation 
travel (share 

of empty) 

Total 
VMT 

Travel Time 
Delay 

Energy & 
Emissions 

Zhang et al. 
2015 

Hypothetical 
US city 
similar to 
Atlanta, GA 
US 

Agent-based model 
with travel profile 
from 2009 NHTS; 
randomly generated 
demand for 10 by 10 
mile gridded area; 
constant peak and off-
peak speeds (no 
network) 

DTA route choice 
with relocation 
travel 

Weekday 100% Shared 
Taxi 

Relative to AV taxi 14% -5% -6% -13% daily;  
-37% peak 

+7% cold 
starts; 
+10% 

chargeable 
breaks 

Faganant & 
Kockelman 
2014 

Hypothetical 
US city 
similar to 
Austin, TX US 

Agent-based model; 
10 by 10 mi. gridded 
area; demand 
randomly generated 
with some basis in 
2009 NHTS; constant 
peak and offpeak 
speeds (no network) 

DTA route choice 
with relocation 
travel 

Weekday 100% Taxi 

- 

10% 

- 

+10.7% 

- 

-12% 
energy;  

-5.6% 
GHG;  
- 49% 
VOC;  

-34% CO 

Fagnant et 
al. 2015 

Austin, TX US Agent-based dynamic 
assignment (MATSim); 
12 by 24 mi. core city; 
demand from MPO 4 
step model; network 
with link-level travel 
times 

DTA route choice 
with relocation 
travel 

Weekday 100% Taxi 

- 

11% 

- 

+8.0%   -14% 
energy;  

-7.6% 
GHG;  

-47% VOC;  
-32% CO 

Faganant & 
Kockelman 
2016 

Austin, TX US Same as above Same as above  Weekday 100% Taxi & 
Shared Taxi 

Taxi 11% 

- 

+8.7% 

- - 

Taxi & Shared Taxi +4.5% 

Taxi & Shared Taxi + 
30% TT 

+2.7% 

Taxi & Shared Taxi + 
40% TT 

12% +1.5% 

Maciejewski 
& Bischoff 
2016 

Berlin, 
Germany 

Agent-based 
(MATSim): dynamically 
schedules fleet in 
response to demand; 

DTA route choice 
with 
repositioning 
travel 

Weekday 20% Taxi 

- 

10% to 12% 19% 

- 

-15% to 
+9% 

- 
40% Taxi 18% -29% to 

+39% 
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Author(s) Location Method Travel Effects Time 
Period 

AV Scenario (compared to 
conventional vehicles 

unless specified) 

Fleet (% of 
conventional 

vehicles) 

Relocation 
travel (share 

of empty) 

Total 
VMT 

Travel Time 
Delay 

Energy & 
Emissions 

Berlin travel behavior 
data 

60% Taxi 17% -43% to 
+85% 

80% Taxi 17% -57% to 
+173% 

100% Taxi 17% -71% to 
+362% 

Bischoff & 
Maciejewski 
2016 

Berlin, 
Germany 

Same as above  Same as above  Weekday 100% Taxi regional average 10% 16% 

- - - city center 10% or less 

outlying areas 22% to 45%  

Bishoff et al. 
2017 

Berlin, 
Germany 

Same as above, but 
with local taxi data  

Same as above  Weekday 100% Shared 
Taxi 

Relative to 
conventional taxi - 

13% to 20% -22% to 
-15% - - 

AV=automated vehicles; VMT=vehicle miles traveled; GHG=greenhouse gas emissions; VOC=volatile organic compounds; CO=carbon monoxide emissions; TT=Travel Time 
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Short to Longer Run Modeling 

In this section, we describe the modeling studies that capture the short run to long run effects 
of automated vehicles by expanding the simulation of effects beyond route choice to land use, 
trip, destination, time of day, and/or mode choice. These studies and their results are described 
in Table 2. The studies simulate the effects of personally owned automated vehicles and 
automated taxi fleets with and without sharing by representing empty vehicle repositioning 
travel and changing roadway capacities, value of time (VOT), and the per mile cost of use. All 
studies assume level 4 vehicle automation.  
 
Only one study represents the effects of personal automated vehicles on home location choice 
in Melbourne, Australia (Thakur et al., 2016). It uses a travel and land use model calibrated to 
regional MPO forecasts. The travel model represents destination and mode choice and uses a 
static assignment route choice model. A fleet of level 4 personal automated vehicles with full 
market penetration is represented by reducing traveler’s value of time by 50%. The land use 
results show shifts in population locations from the inner suburbs (-4%) to the outer (+2%) and 
middle suburbs (+1%). Total VMT and average vehicle trip time grows by 30% and 24%, 
respectively, while transit mode share increases by 3 percentage points and transit mode 
shares declines by 3 percentage points.  
 
Regional MPO travel demand models are used to simulate personal automated vehicles with 
100% market penetration in the cities of San Francisco (CA) and Seattle (WA) by increasing 
roadway capacity and reducing value of time. Gucwa (2014) uses the San Francisco Bay Area 
MPO regional activity-based travel demand model to simulate a 100% increase in roadway 
capacity with and without a 50% reduction in value of travel time and finds a 7.9% and 2%, 
respectively, increase in VMT. Childress et al. (2014) use an activity based model for the Seattle 
region MPO and simulate a 30% increase in roadway capacity with and without a 65% reduction 
in value of time and a 50% reduction in parking costs. When roadway capacity is increased with 
and without a 65% reduction of value of travel time for high income individuals only VMT 
increases by 3.6% and 5%, respectively, and average travel delay declines by 17.6% to 14.3%, 
respectively. However, when the 65% reduction of value of time is applied to all individuals, 
parking costs are reduced, and roadway capacity is increased, total VMT increases by 19.6% and 
average delay increases by 17.3%. Childress et al. (2014) also examine changes in accessibility 
and VMT by zone from the simulated scenarios and find extreme increases in accessibility and 
VMT in outlying areas of the region and in some core urban areas, which suggest the potential 
for relocation of households and businesses to those areas. Note that the implied elasticity of 
demand for travel with respect to capacity increase is low for both these studies (0.002 and 
0.012, respectively) relative to the empirical literature, as described in section 1 f above. As a 
result, the increases in VMT and reductions in travel delay are likely underestimated. 
 
The activity and agent based travel demand model (POLARIS) is applied to the Ann Arbor (MI) 
region to evaluate different levels of personal automated vehicle market penetration rates, 
roadway capacity expansion, and value of time (Auld et al., 2017). The model represents trip, 
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destination, mode, and dynamic assignment route choice. Auld et al. (2017) find that, when 
automated vehicle market penetration rates are at 100% and roadway capacity expands by 12% 
to 77%, VMT increases by 0.4% and 2% and average vehicle travel time is reduced by about 2% 
to 5%. When value of travel times of 25% and 75% are applied to market penetration rates of 
20% and 70%, VMT increases from about 1% to 19% and average vehicle trip time increases 
from 2% to 30%. Changes in market penetration, roadway capacity, and value of times are 
combined and the results indicate an increase in VMT that ranges from 2% to 28% and average 
vehicle trip times that range from 2% to 30%. The authors note that the implied elasticity of 
demand for travel with respect to capacity for this study is 0.027 which is low compared with 
estimates in the empirical literature, as described above.  
 
Levin and Boyles (2015) modify the Austin (TX) regional MPO four step model to simulate 
personal automated vehicles with 100% market penetration in the downtown areas. This model 
represents destination, mode, and static assignment route choice. The model simulates 
personal automated vehicle travel by reducing vehicle following distances and jam densities to 
increase roadway capacity. The model also represents relocation travel and parking (e.g., to 
avoid parking cost vehicles will travel home after driving travelers to work). Levin and Boyles 
(2015) find that, in the peak period, the introduction of automated vehicles increase the 
disutility for parking and as a result 83% of total trips are round trips for repositioning. Vehicle 
trips increase by 275.5% while transit trips decline by 63%. However, average link speeds, 
weighted by length, are reduced by 9%.  
 
Another study (de Alameidia Correia & van Arem 2016) examines the effects of a fully 
automated personal vehicle fleet with an agent-based model that represents mode choice and 
dynamic assignment route choice with parking and repositioning in Delft, Netherlands, which is 
a small city in South Holland. The model uses roadway and transit networks and mode choice 
coefficients and generalized cost functions from Arentz and Molin (2013). This study examines a 
fully automated vehicle fleet and varies the paid and free parking and value of travel time 
(reduced by 50%) and finds that paid parking significantly increases empty vehicle location 
travel, VMT, and vehicle hours of delay and reduces car mode share and total vehicle parking 
time. The largest increase in VMT and empty vehicle miles traveled (325% and 87.4%, 
respectively) and the greatest decline in total vehicle parking time (8.7%) was in the scenario 
where parking charges were implemented everywhere. Congestion or vehicle hours of delay 
grew the most (824%) where there was a charge for parking everywhere except for two 
peripheral lots. Reduced value of time in the paid parking scenarios increases VMT and total 
vehicle parking time in scenarios with free parking limited to the periphery, but dampens the 
increase in empty vehicle relocation travel and vehicle hours of delay. Overall, the share of 
repositioning travel ranges from 11% to 65%, the increase in car mode share ranges from -26 
percentage points to 31 percentage points, VMT grows from 17% to 325%, vehicle hours of 
delay increases from 20% to 699%, and total vehicle parking time ranges from -7% to 25%.  
 
Several studies examine the effects of automated taxi and shared taxi fleets. Azevedo et al. 
(2016) examine the effect of a policy that prohibits personal vehicle travel in the CBD of 
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Singapore (i.e., transit access to CBD only) and introduces a fleet of shared automated vehicles 
with a fare that is 40% of the taxi fare. The policy is simulated with an activity and agent based 
model (SimMobility) that makes use of local travel survey data, roadway and transit networks, 
and local taxi data. The model represents trip, destination, time-of-day, mode, and route 
choice. They find that the shared automated taxi to vehicle replacement rate of 1 to 4 and a 29 
percentage point increase in the daily shared automated taxi mode, a 3 percentage point 
increase in transit mode share, and a 1 percentage point increase in both taxi and walk mode 
share.  
 
Chen and Kockelman (2016) simulate an automated electric taxi fleet that competes with other 
modes by per mile cost of use and with travel time benefits in a hypothetical mid-sized region 
(100-mile by 100-mile gridded area) similar to Austin (TX). The agent-based MATSim framework 
is implemented with MPO trip generation rates by population densities, trip length distributions 
from the 2009 NHTS, and fixed peak and off-peak travel speeds that vary by area type 
(downtown, urban, suburban, and exurban). The model represents both mode and DTA route 
choice with vehicle repositioning. In these scenarios, value of time is reduced to 25%, 35%, and 
50% of current value of travel time and per mile charges are 75 cents, 85 cents, and one dollar. 
As value of time and average per mile cost increases average trip length decreases. When the 
automated electric taxi service costs 85 cents per mile, average trip distance increases by 20 to 
29 percent at 25% and 35% values of travel time, but declines somewhat (4%) at 50% value of 
travel time. At 35% value of travel time, average trip distance increases by 20% and 35% when 
per mile costs are 75 and 85 cents, respectively, but declines (3%) when per mile costs are one 
dollar. This study shows that at the right per mile cost an automated vehicle fleet may not 
increase VMT and congestion. 
 
Martinez and Christ (2015) use a SA route choice model with a rule-based mode choice model 
(using proximity and trip length) to simulate an automated taxi and shared taxi fleets with and 
without transit. The models use population attributes and travel demand data from a local 
travel survey and travel times are based on hourly updated link speeds from a roadway 
network. In general, high market penetration (100% versus 50%) of shared automated taxis 
(versus automated taxi) with transit (versus no transit) produces greater replacement rates of 
automated taxis to private cars and decreases the growth in VMT and parked vehicles. 
However, all scenarios see increases in VMT (from a low of 6% to a high of 88%) and reductions 
in parked vehicles (6% to 104%) due to empty vehicle travel and the elimination of bus routes. 
The vehicle fleet replacement rate varies from a low of 1 to 10 in the 100% shared taxi with 
transit scenario to a high of 1.1 to one in the 50% taxi without transit. 
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Table 2. Summary of Short to Long Run Scenario Modeling Studies 

Author Location Method Travel Effects Time 
Period 

AV Scenario Parameters Fleet (% 
baseline) 

Relocation 
VMT 

Mode 
Choice 

Total 
VMT 

Travel 
Time 

Land 
Use/Parking 

Thakur et 
al. 2016 

Melbourne
, Australia 

Travel & 
land use 
model 
calibrated 
to regional 
forecasts 

Home 
location, 
destination, 
mode & SA 
route choice  

Weekday 100% 
Personal 

50% VOT 

- - 

+3 PP Car; -
3 PP Transit 

+30%  +24% Avg. 
VTT 

Suburb pop.: 
+2% outer; -1% 

middle;  
-4% inner 

Childress 
et al. 
2014 

Seattle, 
WA (US) 

MPO 
regional 
activity-
based 
travel 
model 

Destination, 
mode & SA 
route choice  

Weekday 100% 
Personal 

+30% road capacity 

- - 

0 PP 
+3.6% 

-17.6 Avg. 
Delay 

Outlying & some 
core high access 
& VMT increase  +30% road capacity; 65% high income 

VOT  
-1 PP Car 

+5% 
-14.3 Avg. 

Delay 

+30% road capacity; 65% VOT; -50% 
parking cost  

+1 PP Car;  
-2 PP Walk +19.6% 

+17.3 Avg. 
Delay 

Gucwa 
2014 

San 
Francisco, 
CA (US) 

MPO 
regional 
activity-
based 
travel 
model 

Destination, 
mode & SA 
route choice  

Weekday 100% 
Personal 

+100% road capacity 

- - - 

+2% 

- - 

+100% road capacity; 50% VOT +7.9% 

Auld et al. 
2017 

Ann Arbor, 
MI (US) 

Activity & 
agent-
based 
travel 
model 
(POLARIS) 
with data 
from MPO 
(survey & 
network) 

Trip, 
destination, 
mode & DTA 
route choice  

Weekday 100% 
Personal 

+12% to +77% road capacity 

- - - 

+0.4% to 
+2% 

-1.8% to -
4.5% Avg. 

VTT 

- 

20% 
Personal 

25% to 75% VOT +1.3% to 
+5% 

+1.8% to 
+7.1% Avg. 

VTT 

75% 
Personal 

25% to 75% VOT +5.7% to 
+18.6% 

+8% to 
+30% Avg. 

VTT 

20% 
Personal 

25% to 75% VOT; +3% road capacity +1.6% to 
+5.3% 

+1.6% to 
+7.1% Avg. 

VTT 

75% 
Personal 

25% to 75% VOT; +12% road capacity +4.3% to 
+12.7% 

+3.2% to 
+15.9% 

Avg. VTT 

100% 
Personal 

25% to 75% VOT; +77% road capacity; 
AV Int. 

+10% to 
+28.2% 

+4.5% to 
+30.1% 

Avg. VTT 
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Author Location Method Travel Effects Time 
Period 

AV Scenario Parameters Fleet (% 
baseline) 

Relocation 
VMT 

Mode 
Choice 

Total 
VMT 

Travel 
Time 

Land 
Use/Parking 

Levin & 
Boyles 
2015 

Downtown 
Austin, TX 
(US) 

Modified 4 
Step Model 
& MPO 
travel data 

Destination, 
mode & SA 
route choice 
(parking & 
repositionin
g) 

Peak 
Period 

100% 
Personal 

Reduced following distance & jam 
densities 

- 

83% -63% transit 
trips; 

+274.5 
vehicle trips  

- 

-9% Avg. 
Link Speed 
(weighted 
by length) 

Increased 
parking disutility 

Azevedo 
et al. 
2016 

CBD 
Singapore 

Activity & 
agent 
travel 
model 
(SimMobilit
y) with 
travel 
survey, 
network & 
taxi data 

Trip, 
destination, 
time of day, 
mode & DTA 
route choice 

- Shared 
Taxi 

No private vehicles; areas only 
accessed by transit; service cost 40% 
current taxi 

40% - +3% PP 
transit; 

+29% PP 
shared taxi; 
+1% PP taxi; 

+1% PP 
walk 

- - - 

de 
Alameidia 
Correia & 
van Arem 
2016 

Small city 
Delft, 
Netherland
s (South 
Holland) 

Agent-
based 
model with 
travel 
survey 
data, 
networks; 
mode 
choice 
coefficients 
& 
generalized 
cost 
functions 
from 
Arentz and 
Molin, 
2013    

Mode & DTA 
route choice 
with parking 
and vehicle 
repositionin
g 

Weekday 100% 
Personal 

Free home parking & 2 free 
peripheral lots 

- 

11.5% +3.4 PP car 
+17.3% +20.0% 

VHD 
-7.0% VPT 

Paid parking everywhere (same price) 87.4% -26.2 PP car +325.6% +228.9% 
VHD 

-8.7% VPT 

Free parking everywhere  10.8% +30.6 PP car +20.9% +49.3% 
VHD 

+15.8% VPT 

2 free peripheral parking lots 64.8% -20.3 PP car +142.6% +824.1% 
VHD 

-23.5% VPT 

1 free peripheral parking lots 53.2% +16.1 PP car +119.1% +699.2% 
VHD 

+18.8% VPT 

50% VOT 10.3% +6.2 PP car +49.4% 0% VHD +8.2% VPT 

50% VOT & 2 free peripheral parking 
lots 

62.8% -9.7 PP car +190.3% +276.1% 
VHD 

-19.4% VPT 

50% VOT & no free parking except 1 
lot 

50.4% +10.6 PP car +165.7% +796.7% 
VHD 

+24.8 VPT 

Chen & 
Kockelma
n 2016 

Hypothetic
al mid-
sized city 

Agent-
based 
(MATSim); 

Mode & DTA 
route choice 
with vehicle 

Weekday Electric 
Taxi 
compete

Electric Taxi: 25% VOT & $0.85/mile 
- 

7.2% 
- 

+29% 
Avg. TD 

mi. 
- - 
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Author Location Method Travel Effects Time 
Period 

AV Scenario Parameters Fleet (% 
baseline) 

Relocation 
VMT 

Mode 
Choice 

Total 
VMT 

Travel 
Time 

Land 
Use/Parking 

like Austin, 
TX (US)  

MPO trip 
generation 
rates; 2009 
NHTS trip 
distance; 
fixed 
vehicle 
speeds 

repositionin
g 

s with 
other 
modes 

Electric Taxi: 35% VOT & $0.85/mile 7.7% +20% 
Avg. TD 

mi. 

Electric Taxi: 50% VOT & $0.85/mile 9.1% -4% Avg. 
TD mi. 

Electric Taxi: 35% VOT & $0.75/mile 6.8% +35% 
Avg. TD 

mi. 

Electric Taxi: 35% VOT & $1.00/mile 9.4% -3% Avg. 
TD mi.  

Martinez 
& Christ 
2015 

Lisbon, 
Portugal 

Model with 
population 
& travel 
demand 
from travel 
survey 
data; travel 
times 
based on 
hourly 
updated 
link 
occupancy  

SA route 
choice & 
rule based 
mode choice 
(proximity & 
trip length) 

Weekday 100% 
Shared 
Taxi 

No Transit 12.8% 

- - 

+21.6% 

- 

7.2% BPV 

Transit 10.4% +5.5% 
5.6% BPV 

100% 
Taxi 

No Transit 22.8% +88.2% 16% BPV 

Transit 16.8% +43.2% 10.7% BPV 

50% 
Shared 
Taxi + 
50% 
private 
car 

No Transit 102.4% +58.9% 99.4% BPV 

Transit 78.2% +7.6% 

75.8% BPV 

50% Taxi 
+ 50% 
Private 
Car 

No Transit 107% +89.5% 103.8% BPV 

Transit 82% +49.7 

78.8% BPV 

AV=automated vehicles; VMT=vehicle miles traveled; SA=static assignment; DTA=dynamic traffic assignment; VOT=value of in vehicle travel time; PP=percentage point; Avg. 
VTT=average vehicle travel time; NHTS=National Household Travel Survey; VHD=vehicle hours of delay; VPT=total vehicle parking time; BPV=% share baseline parked vehicles 
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Extrapolation Studies 

Two studies take an extrapolation approach to representing the effect of automated vehicles. 
These studies use existing case studies and analysis of new data to quantify the magnitude of 
change by specific effect. The advantage of this type of analysis is that more effects can often 
be incorporated into the analysis; however, the disadvantage is that effects are fixed and 
countervailing and compounding effects of scenario effects are difficult to represent. See  
Table 3. 
 
Brown et al. (2004) use a modified Kaya Identity, where use intensity is VMT/vehicle, energy 
intensity is Energy/VMT, and fuel intensity is Liquids/Energy, and quantify the following 
potential effects of automated vehicles: platooning, efficient driving, efficient routing, travel by 
underserved populations, faster travel, induced travel, lighter vehicles, reduced parking search 
time, more carpooling and electrification. They create three scenarios, one of which includes all 
the potential effects that would tend to increase fuel use, another which includes all the 
potential effects that would tend to decrease fuel use, and finally, one that includes all effects. 
The results show increases in VMT that range from 74% to 90% and a 16% reduction in VMT. 
Vehicle fuel demand increases by 173% in the scenario that includes all potential fuel increasing 
factors, but it decreases by 91% to 95% in the other two scenarios.  
 
Wadud et al. (2016) use the ASIF framework, which is equal to activity level multiplied by mode 
share multiplied by energy intensity multiplied by fuel carbon content, to estimate the effect of 
scenarios in which the effects of changes in congestion, eco-driving, platooning, highway 
speeds, performance, crash avoidance, right-sizing vehicles, feature content, generalized cost 
(reduced value of time and induced travel), new users, new mobility models, and fuel mix are 
represented. Their analysis represents modest to aggressive implementation of automated 
vehicles, in which VMT increases from 15% to 75% and energy demand is reduced by 70% or 
increases by 120%.  
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Table 3. Summary of Extrapolation Scenario Modeling Studies 

Author(s) Location Method Travel and Energy Effects Time 
Period 

AV Level Scenario Parameters Total VMT Energy 
Demand 

Wadud et 
al. 2016 

US Energy decomposition 
framework (ASIF=Activity 
Level x Mode Share x Energy 
Intensity x Fuel Carbon 
Content) including factors 
that may changes travel and 
energy demand with AVs; 
magnitude of change by 
factor extrapolated from 
literature or new analysis of 
existing data  

Congestion, eco-driving, 
platooning, highway speeds, 
performance, crash 
avoidance, right-sizing 
vehicles, feature content, 
generalized cost (reduced 
VOT and induced travel), 
new users, new mobility 
models & fuel mix  

Annual 100% Personal  3 -25% platooning, -4% congestion, 
-20% eco-driving, -23% 
performance, -5% crash 
avoidance, +56% generalized cost 
& +7% new user groups 

~ +70%* ~ -70% 

98% Personal; 
2% Carsharing 

2 -14% platooning, -5% eco-driving, 
+9% generalized cost & +2% car-
sharing 

~ +15%* ~ -10% 

80% Personal; 
20% Car-sharing 

4 -25% platooning, -4% congestion, 
-20% eco-driving, -23% 
performance, -5% crash 
avoidance, -45% eco-driving; 
+20% highway speeds, +10% 
increased features; +89% 
generalized cost, +11% new user 
groups & -20% carsharing  

~ +75%* ~ -50% 

100% Personal 4 +20% highway speeds, +10% 
features, +49% generalized cost; 
+11 new user groups 

~ +75%* ~ +120% 

Brown et 
al. 2014 

US Modified Kaya Identity 
(where use intensity is 
VMT/vehicle, energy 
intensity is Energy/VMT & 
fuel intensity is 
Liquids/Energy) including 
factors that may changes 
travel and energy demand 
with AVs; magnitude of 
change by factor 
extrapolated from literature 
or new analysis of existing 
data  

Platooning, efficient driving, 
efficient routing, travel by 
underserved populations, 
faster travel, induced travel, 
lighter vehicles, reduced 
parking search time, more 
carpooling and 
electrification 

Annual 100% Personal 4 All identified potential fuel use 
increases: +40% travel by 
underserved populations, +30% 
faster travel & +50% induced 
travel 

90% +173% 
vehicle fuel 

demand 

88% Personal; 
12% Carpool 

4 All identified potential fuel use 
decreases: -10% platooning, -45% 
efficient driving, -5% efficient 
routing, -50% lighter vehicles, -4% 
parking search travel, -12% 
carpooling & -75% electrification 

-16% -95% 
vehicle fuel 

demand 

88% Personal; 
12% Carpool 

4 All effects 74% -91% 
vehicle fuel 

demand 

AV=automated vehicles; VMT=vehicle miles traveled; VOT=Value of Time 
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Conclusion 

Research on automated vehicles is extremely important because they may significantly disrupt 
our transportation system with potentially profound effects, both positive and negative, on our 
society and our environment. However, this research is very hard to do because fully 
automated vehicles have yet to travel on our roads. As a result, automated vehicle research is 
largely conducted by extrapolating effects from current observed behavior and drawing on 
theory and models. Both the magnitude of the mechanism of change and secondary effects are 
often uncertain. 
 
Moreover, the potential for improved safety in automated vehicles drive the mechanisms by 
which VMT, energy, and GHG emissions may change. We really don’t know whether automated 
vehicles will achieve the level of safety that will allow for completely driverless cars, very short 
headways, smaller vehicles, lower fuel use, and/or reduce insurance cost. We don’t know 
whether automated vehicle fleets will be harmonized to reduce energy and GHG emissions.  
 
Given these caveats, we summarize findings from the existing literature on this subject and 
evidence quality.  

• Road Capacity: Safety improvements from automated vehicles could significantly 
reduce headways on roadways and the results could be an almost doubling or tripling of 
capacity. These findings are based on a limited number of microsimulation studies that 
draw on traffic flow theory. Only one study uses field data. However, there is a relatively 
strong body of literature on the induced travel effects of roadway capacity on VMT. This 
literature suggests that the elasticity of VMT with respect to road capacity is 0.3 to 0.6 
(short run) and 0.6 to 1.0 (long run).  

• Time Costs: The ability to engage in other activities while traveling in an automated 
vehicle may reduce the time burden of travel. Potential reductions in the value of travel 
time from automated vehicles are largely extrapolated from the results of stated 
preference surveys of car passengers and rail passengers, which may or may not be 
transferable to the experience automated vehicle passengers. The results of these 
studies vary widely, but 75% to 82% of current driver values of time may be reasonable. 
Studies also indicate that working may not be a common use of time for those traveling 
in automated vehicles. 

• Monetary Costs: Safety improvements in automated vehicles may lower vehicle 
insurance costs. Reductions in fuel costs could be enabled from lighter vehicles, lower 
time costs of refueling electric vehicles, and harmonization of vehicle flows. Avoided 
labor cost could enable fleets of automated taxis and shared taxi with user costs lower 
than personal vehicles. The magnitude of cost reductions is largely speculative, and few 
peer reviewed studies evaluate these effects. Reduced monetary costs of vehicle travel 
would tend to increase VMT. The body of literature on the effect of gas prices, which is 
the largest component of variable cost for conventional vehicles, on VMT is relatively 
strong. Elasticity of VMT with respect to gas price is -0.03 to -0.10 (short run) and -0.13 
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to -0.30 (long run). Only one study in New York City estimates the elasticity of taxi trips 
with respect to fares at -0.22, which may be applicable to automated taxi fleets. 

• Mode Choice: Available research suggests that automated vehicles would reduce transit 
and non-motorized mode shares and increase car mode shares. The limited available 
research on this subject confirms expected direction change, but magnitude is highly 
uncertain due to study quality. 

• Empty Vehicle Relocation Travel: Automated vehicles may travel while empty to pick up 
passengers and to avoid parking where it is scarce, or costs are high. The limited 
research on this topic shows that empty relocation travel is positively correlated with 
distance from the urban core, the price of parking, and per mile user costs, and is 
inversely correlated with ride-sharing and transit. Empty relocation travel may 
contribute significantly to VMT effects of automated vehicles; however, studies do not 
fully represent induced travel effects and thus may overestimate the relative 
importance of this effect. U.S. studies are simulated only in Austin (TX). 

• Parking: There are very few studies that evaluate the effect of automated vehicles on 
parking. Three simulation studies (one in the U.S. and two in the E.U.) suggested that 
automated taxis may reduce parking demand by about 90%.  

• New Travelers: Automated vehicles may allow many people to engage in car travel who 
cannot now drive a vehicle because of young-age and/or medical disabilities. Also, if 
shared automated taxis provide travel at a cost lower than current costs, then many 
lower income people who do not have access to a reliable car may also begin traveling 
more by car. Only a few studies evaluate the potential magnitude of this effect by 
extrapolating from 2009 NHTS Household Travel Survey data. Most studies estimate an 
increase in VMT on the order of 10% to 14%. However, the magnitude of effects is 
based largely on study assumptions.  
 

In sum, this review suggests that personal automated vehicles and automated taxis are likely to 
significantly increase VMT and GHG and eliminating parking could exacerbate these increases. 
Electrifying the automated vehicle fleet could counter GHG growth, but will likely reduce 
vehicle operating costs and further increase VMT and congestion. Shared automated taxis could 
significantly reduce VMT and GHGs, but pricing polies are likely needed to get people to share. 
City center congestion could increase with significantly higher freeway capacity, which could 
result in urban flight and suburban sprawl in outlying areas that are relatively less congested. 
Policies to counter these trends could include (1) reinvesting in heavy rail transit to city centers 
with expanded first and last mile access in suburban areas by providing by automated vehicle 
shuttles and (2) cordon pricing around city centers to reduce congestion, make neighborhoods 
livable, and avoid sprawl.  
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