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Abstract: Autonomous/unmanned driving is the major state-of-the-art step that has a potential to
fundamentally transform the mobility of individuals and goods. At present, most of the developments
target standalone autonomous vehicles, which can sense the surroundings and control the vehicle
based on this perception, with limited or no driver intervention. This paper focuses on the next
step in autonomous vehicle research, which is the collaboration between autonomous vehicles,
mainly vehicle formation control or vehicle platooning. To gain a deeper understanding in this area,
a large number of the existing published papers have been reviewed systemically. In other words,
many distributed and decentralized approaches of vehicle formation control are studied and their
implementations are discussed. Finally, both technical and implementation challenges for formation
control are summarized.

Keywords: formation control; leader-follower approach; consensus control; behaviour-based
approach; potential field; swarm intelligence; machine learning; model predictive control;
virtual structure approach; flocking control

1. Introduction

A driverless vehicle is a next big innovation in the transport industry. Many automotive
companies are now working on five levels of autonomy [1]. Most of these companies are doing
research on developing the fifth level of autonomous car and set to launch their cars in upcoming years.
The introduction of fully autonomous vehicles will perhaps constitute the largest change to everyday
transportation in living memory and is predicted to deliver a wide range of environmental, social and
economic benefits [2]. Moreover, the United Kingdom has launched several projects to develop this
technology further and created a Centre for Connected and Autonomous Vehicles (CCAV) [3].

A vehicle formation control or vehicle platooning is an important part of traffic management
because of several benefits such as improved safety, fuel efficiency, mileage, a time needed to travel and
reduced road congestion. Vehicles on the road usually follow another vehicle and form a platoon-based
formation. For the human-operated vehicle, a platoon based formation is simple and can be seen
every day. However, for connected autonomous vehicles (CAV), they must stay in the lanes and
follow nearby vehicles by maintaining safe distance and velocity. The aim of the platoon formation
control is to confirm that all vehicles in a platoon move at the same speed while maintaining a desired
formation shape or geometry, which is stated by a desired inter-vehicle spacing strategy [4]. Therefore,
for autonomous vehicles, forming a platoon formation requires specific algorithms, controllers and
strategies consisting of longitudinal and lateral control.

Furthermore, for a formation control, vehicles need to communicate with each other; therefore,
information sharing plays a vital role in the overall operation. This overall operation can be called
collaboration within vehicles. A collaboration depends on sensing and information sharing within
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a vehicular network. The challenge here is to make these two operations, i.e. sensing and information
sharing, autonomous to achieve desired control. Therefore, as autonomous vehicles are being
developed, the next problem of collaboration between vehicles in dynamic environment needs to
be addressed. The solution to these problems will secure the future of the CAVs. Figure 1 shows
a summary of current approachs and methods used for formation control.

Figure 1. Formation control approaches.

In the leader-follower approach, a leader is assigned to the multi-robot formation and remaining
robots are the followers. In this approach, a leader follows its desired trajectory while follower robots
track the position of the leader. There are three kinds of leader in this approach, namely static leader,
dynamic leader and virtual leader. The advantage of this approach is the reduced tracking errors
and can be analysed using standard control techniques [5]. Another benefit is that only the leader is
responsible for planning trajectories and followers must follow the coordinates of the leader; therefore,
it results in a simple controller. In terms of disadvantage, a leader’s fault can penalise the whole
formation and feedback from followers to a leader is generally not applied in this approach.

In the behaviour-based approach, each individual robot shows several behaviours based on
sensory inputs such as obstacle avoidance, goal seeking and formation keeping where final control is
derived from the weighting of the relative importance of each behaviour. There are main four methods
in this approach, namely motor scheme, potential field, swarm intelligence and flocking. This approach
can be defined as a structured network of such interacting behaviours where the final action of each
robot is derived by the behaviour coordinator. The behaviour coordinator multiplies the output of
each behaviour by its relative weight, then summing and normalizing the results. One advantage of
this approach is that it can operate in the unknown and dynamic environment because it is a parallel,
real-time and distributed method, requiring less information sharing [5]. Its another advantage is that
each behaviour has its physical meaning and the formation feedback can be incorporated into group
dynamics by coupling the outputs of each individual behaviour. This method has some disadvantage
such as the need to deriving a mathematical model of group dynamics, studying the convergence of
specific formation, and guaranteeing the stability of the whole formation [6].

In the virtual structure approach, a virtual rigid structure is derived that represents a form of
agents. Then, the desired motion of the virtual rigid structure is given, and agents’ motion is derived
from the given rigid structure. Finally, to track the agents, a tracking controller for each individual
agent is derived in which the formation is maintained by minimising the error between the virtual
structure and the current agent position. In this approach, the desired trajectory is not assigned to the
single agent, but it is shared by the whole formation team. In terms of advantage, this approach is easy
to prescribe the coordinated behaviour for the whole group [5]. In terms of disadvantage, this approach
is centralized, therefore, a single point of failure can crash the whole system. Furthermore, heavy
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communication and computation burden is concentrated on the centralized location, which may
degrade the overall system performance [7].

The rest of this paper organised as follows. Some preliminaries are discussed in Section 2 to help
readers to understand several concepts in the multi-robot systems. In Section 3, the leader-follower
approach is presented, including the literature on vehicle platooning and formation controller design.
The behaviour-based approach is described in Section 4, including motor schema-based method,
potential field method, flocking and swarm intelligence based method for vehicle formation control.
Section 5 analyses the virtual structure approach and resultant formation controllers. Finally, a number
of technical and implementation challenges are discussed in Section 6.

2. Preliminaries

In this section, the fundamental concepts which are frequently used in formation control are
covered such as communication topologies, graph theory and consensus. A consensus control theory is
used to study the interaction between a group of dynamical agents. A tool commonly used to analyse
consensus control strategies is the graph theory, whereas the communication topologies indicate
a potential interaction between neighbouring agents and are described by the graph.

2.1. Topologies

To attain formation control, information sharing with other robots is a key task in the multi-robot
system. Therefore, topologies are implemented in the vehicle platooning to address the information
sharing problem. These topologies are responsible for the information exchange flow which describes
how the vehicles in a platoon exchange information with each other. There are different types of
communication topologies to choose from, and some of them are shown in Figure 2.

Figure 2. Leader–follower topologies, adapted from [8].
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In Figure 2, several leader–follower topologies are presented. Here, topology A is the predecessor
following (PF) topology, topology B is the predecessor–leader following (PLF) topology, topology C
is the bidirectional (BD) topology, topology D is the bidirectional-leader (BDL) topology, topology
E is the two-predecessor following (TPF) topology and topology F is the two-predecessor–leader
following (TPFL) topology. Note that these topologies are for single platoon formation. During platoon
operation, several scenarios can take place such as interaction between multiple platoons or loss
of communication under existing topology. Therefore, dynamic or switching topologies should be
considered for platoon stability and mobility [9,10]. Here, dynamic or switching topology means that
the topology of platoon formation switch into a different topology over time.

2.2. Algebraic Graph Theory

Graph theory is used in the multi-robot formation control for the information exchange between
autonomous robots, to perform the stability analysis of the formation, and to achieve consensus.
The topologies discussed previously are modelled as a graph where robots can be represented as nodes
of a graph and intersections such as sensing and communication can be represented as edges of the
graph. Here, two basic graph theories are presented, directed graph or diagraph and undirected graph.
More information on graph theory can be found in these books [11,12].

A diagraph is called strongly connected if there is a directed path from every node to every other
node. A diagraph g is defined as pair (V, E), where V denotes the set of nodes and E ⊆ VxV denotes
the set of ordered pairs of the nodes, called edges. It is assumed that there is no self-edge, i.e., (i, i) /∈ E
for any i ∈ V. The set of neighbours of i ∈ V is defined as a set Ni := j ∈ V : (i, j) ∈ E. A directed path
of g is an edge sequence of the form (vi1 , vi2), (vi2 , vi3), ..., (vik−1

, vik ). If (i, j) ∈ E, j is called a parent
of i and i is called a child of j. A tree is a directed graph where a node, called the root, has no parent
and the other nodes have exactly one parent. A spanning tree of a directed graph is a directed tree
containing every node of the graph.

Given a directed graph g = (V, E), where wij is a real number associated with (i, j) for i, j ∈ V
and assume that wij > 0 if (i, j) ∈ E and wij = 0, otherwise. The Laplacian matrix L = [lij] ∈ R|v|x|v| of
g is defined as:

lij =

{
∑k∈Ni

wik, if i = j,

−wij, if i 6= j.
(1)

An undirected graph is called connected if there is a path between any distinct pair of nodes.
Let g be a directed graph such that (i, j) ∈ E if and only if (j, i) ∈ E and wij = wji for all (i, j) ∈ E.
Then, g is said to be undirected. The Laplacian matrix L of g is symmetric and positive semi-definite.
If g is connected, the second smallest eigenvalue of L is positive. Furthermore, the Laplacian matrix L
can be defined as, L = D− A. Here, D is the degree matrix and A is the adjacency matrix.

2.3. Consensus in Multi-Robot Systems

In multi-robot systems, reaching a consensus can be considered as one of the important
requirements where autonomous vehicles can reach an agreement to form a formation by sharing
information locally with their neighbour vehicles. Generally, convergence to a common value is called
consensus, and this depends on communication between autonomous vehicles. Analysing emergent of
consensus behaviour as a result of local interactions among mobile agents who share information only
with their neighbours according to some designed distributed protocols is a critical issue. A consensus
is helpful in several ways such as:

• Alignment (Pointing in the same direction),
• Synchronization (Agreeing on the same time),
• Distributed Estimation (Agreeing on the estimation/measurement of the distributed quantity),
• Rendezvous (Meeting at a common point).
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Earlier, a consensus problem was targeted by a first-order dynamical system [13,14]. Afterwards,
the second order consensus where all agents are governed by second-order dynamics, position and
velocity, and the third-order consensus where all agents are governed by third-order dynamics,
position, velocity and acceleration, have attracted much of the interest and several publications
target second-order and third-order consensus to derive sufficient and necessary conditions to
reach consensus.

An analysis on second-order consensus algorithms was carried out using algebraic graph theory
and it concluded that the real and imaginary parts of the eigenvalues of the Laplacian matrix have a key
role in reaching consensus [15]. Moreover, the effect of communication delay was investigated in this
study and it was shown that the second-order consensus can be achieved in the multi-agent systems
with a directed spanning tree only when the time delay is less than a critical value. Another study
proposed a second-order consensus protocol for multi-agent systems with synchronous intermittent
information feedback and directed topology [16]. In this study, algebraic theory and Lyapunov control
approach were used for the analysis and proved that second-order consensus can be reached if the
general algebraic connectivity of the communication topology is larger than a threshold value and
each agent communicates with its neighbours frequently enough as the network evolves.

A third-order consensus of a dynamic system containing position, velocity and acceleration was
studied for the case of an undirected graph [17] and directed networks [18] using algebraic graph
theory in a theoretical study. In these papers, necessary and sufficient conditions for consensus
was established in terms of scaling strength and the eigenvalues of the Laplacian matrix. Moreover,
a consensus problem for the second-order multi-agent and third-order multi-agent systems were
considered in which this heterogeneous system was converted into an equivalent error system for
the stability analysis [19]. In this study, both fixed and switching topologies were considered and
a consensus was achieved by obtaining sufficient and necessary conditions based on Markovian jump
system theory.

3. Leader–Follower Approach

The leader–follower control is a widely adopted formation approach. In this approach, a leader
robot can be implemented in three ways: a static leader where leader robot does not change,
a virtual leader where a software leader is employed, and a dynamic leader where leadership changes
depending on the situation. Furthermore, a communication topology, responsible for the information
exchange between robots, plays a vital role in the leader–follower approach. For the controller design,
most of the literature discusses longitudinal control. However, lateral control is equally important
for the navigation of autonomous vehicles in the structured environment. Once the formation is
attained, the stability analysis of the formation is carried out using string stability analysis. In the
leader–follower approach, consensus is said to be reached on each sum of a position vector and an
inter-vehicle separation vector and the information flow is itself a directed spanning tree [20].

3.1. Leader–Follower Formation Controllers

A leader–follower formation tracking control of the autonomous vehicles was achieved on
a straight path proving that recursive implementation of a cascaded system inspired controller leads
to a spanning-tree communication topology [21]. In this article, the authors recommended working on
switching communication topologies to measure the performance of the formation-tracking controller.
In another paper, a leader–follower semi-centralized approach was employed for the formation control
of the robots using the Hungarian method [22]. In this study, during the first phase, robots selected
a leader and moved following the leader and during the second phase, a formation was given a centre
and robots moved referring to the centre establishing a formation around the centre such as square,
circle and triangle formations.
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Several controllers were developed for the formation control of the multiple vehicles targeting
a leader–follower tracking problem such as feedback linearization controller for formation maintenance,
an adaptive controller to achieve ideal control due to inaccurate relative distance and a robust adaptive
controller to cope with the external interference [23]. In this study, the stability of the system
was confirmed through the Lyapunov method. Moreover, a virtual leader was employed for the
distributed formation control of multiple nonholonomic wheeled mobile robots [24]. Here, the global
position from the virtual leader was not supplied to each follower robot, but followers were able to
exchange information with their neighbour robots. In this study, a distributed kinematic controller
was proposed to achieve consensus and an adaptive dynamic controller was designed to maintain the
stability of the kinematic error system. Another publication proposed a decentralized leader–follower
tracking-agreement controller which used relative velocity and position measurement of the actual
robot, with respect to a leader robot [25]. Here, virtual reference vehicle was used for the reference
trajectory generation and resultant angular and linear velocities were communicated to the leader
robot. Moreover, Lyapunov’s direct method was employed to establish global asymptotic stability.

An active vision-based adaptive leader–follower formation control was achieved in the absence
of communication [26]. In this study, a follower robot was tracking the features of a leader robot
through a camera and two controllers were developed: a formation controller to maintain formation
and a camera controller to provide visual measurements. Furthermore, a vision-based leader–follower
formation control was achieved by developing a neural-dynamic optimization-based nonlinear model
predictive control (MPC) [27]. In this study, a camera on follower robot was employed to track
the features and to measure state and velocity of the leader robot. A vision-based localization and
leader–follower formation control was studied for the nonholonomic mobile robots [28]. In this work,
a necessary condition for observability was derived and an extended Kalman filter was employed to
estimate inter-robot distance.

Another publication used a GQ(λ) algorithm, a gradient-based off-policy temporal-difference
learning algorithm [29], to achieve leader–follower formation control. In this work, a static line
follower was implemented where a leader robot moved without requiring advanced path planning
and map recognition, whereas follower robots tried to learn how to follow the robot directly in front
of them [30]. In the leader–follower approach, controlling throttle and brake of the follower vehicles
is mandatory to regulate the follower vehicle’s speed and position with respect to the leader vehicle.
Using longitudinal control of the vehicle, a reinforcement learning based neural dynamic programming
method, an actor-critic algorithm with three layers of neural networks was developed to learn near
optimal throttle and brake control policy for the follower vehicle. In this work, vehicle’s speed and
distance were input to the network, whereas output was the desired action, throttle or break [31].
In this study, the authors recommended doing experiments on real vehicles.

A platoon formation control can be viewed as a leader–follower approach. It has attracted several
research studies and confirmed its application to practical on-road traffic scenarios by developing
robust controllers. One publication presented the platoon formation framework and divided this
framework into four components, node dynamics, information flow topology, a distributed controller,
and formation geometry as shown in Figure 3 [32]. In this framework, node dynamics describe
the behaviour of an individual platoon vehicle, information flow topology defines the information
exchange between each vehicle inside the platoon, the distributed controller implements the feedback
control via neighbouring vehicle’s information and formation geometry maintains desired inter-vehicle
distance in a platoon.
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Figure 3. Distributed controllers in platoon framework, adapted from [32].

3.2. Second-Order Dynamics

A second-order consensus of multiple inertial agents was achieved for a leader–follower network
in the presence of communication loss and delays. In this work, a necessary and sufficient condition
was given and proved that, if damping and stiffness gains are chosen appropriately, the exponential
consensus can be achieved [33]. A second-order feedback-based control protocol was developed to
form a platoon formation under the non-lane-discipline road to show that proposed controller can
reach a consensus state under sufficient convergence time [34]. Here, convergence means that the
longitudinal gap can converge to the desired distance, the lateral gap can converge to zero, and the
velocity can converge to the desired speed. In this paper, network topology was evaluated under
different initial states by putting vehicles at different positions and the stability of the platoon was
analysed using the Lyapunov technique.

Once the platoon formation is attained, it is important to keep track of the performance of
formation. To study or maintain this formation, a string stability analysis is used. It is an important
part to evaluate the behaviour of the platoon formation. A string stability analysis is the process
of attenuating the disturbance along the vehicle string or platoon and is evaluated by considering
amplification of signals such as the distance error, the velocity, the acceleration, or the control effort in
the vehicle string as the vehicle index increases [35]. Moreover, the CAV technology relies on wireless
communication between autonomous vehicles. Therefore, there might be a case when communication
is delayed or communication link introduces time-varying delay over the vehicular network. Thus,
the resultant effects might affect the stability of the platoon formation. Therefore, to study the stability
of such developed controllers is the fundamental requirement [36].

In a theoretical study, a distributed control protocol to achieve platoon formation in the presence
of heterogeneous time-varying delay was demonstrated by achieving a second-order consensus where
string stability was achieved by using a Lyapunov–Razumikhin theorem [37]. The resultant architecture
provided guaranteed stability of the platoon in the presence of disturbances. In an experimental
study, a previously designed control protocol in [37] was applied to the three-vehicle platoon. Here,
convergence to the desired spacing policy and robustness with time-varying communication topology
were achieved under two scenarios, vehicle joining or leaving a platoon and loss of communication
links [38]. In this study, a velocity and acceleration fluctuation were attenuated downstream the string
of vehicles by the proposed algorithm to accomplish string-stability requirements.

The effects of wireless communication on string stability were studied for cooperative adaptive
cruise control (CACC) using several parameters. One study presented the modelling and string
stability analysis method for the vehicle platooning by considering parameters like time-varying
transmission intervals and delays [39], whereas a subsequent study discussed the design trade-off
between the specification for the vehicle following controller, network performance and string stability
performance criteria by considering parameters like sampling, constant network delay and zero-order
hold (ZOH) for a string stability of the platoon [35].
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A distributed consensus-based reconfigurable control approach for the vehicle platooning
was proposed considering heterogeneous vehicles and time-varying delays [40]. In this study,
the Lyapunov–Razumikhin theorem was used to attain the string stability and a proposed controller
was tested using the real dynamics of heterogeneous vehicles. In this paper, the convergence
analysis was performed to check the performance of platoon maintenance and transient manoeuvres.
In another publication, a study was conducted to analyse the influence of switching topology on
the stability of a platoon of heterogeneous vehicles moving in a rigid formation [41]. In this study,
the Krasovskii-based method proved to be more effective against communication delay compared to
the Razumikhin-based approach.

Moreover, a local and improved second-order consensus control algorithms were applied to
a cooperative car-following model where a local algorithm provided stability and an improved
algorithm used local traffic information and downstream traffic information to smooth the traffic
perturbation [42]. In this study, the authors recommended working on a third-order system by adding
actuator lags and sensing delay. In another theoretical study, a consensus control was applied to
a multi-platoon cooperative driving with consideration of the realistic inter-vehicle communication
using IEEE 802.11p standard [43]. The proposed consensus algorithm considered the position
and velocity data and acceleration was determined by the state difference between vehicle and its
neighbouring vehicles. However, to achieve an equilibrium state, the authors recommended working
on getting acceleration data, which means achieving a third-order consensus.

3.3. Third-Order Dynamics

A distributed control algorithm was developed to achieve a third-order consensus of a vehicular
platoon network in the presence of time-varying heterogeneous delays [44]. In this work,
acceleration errors due to time delay were taken into consideration to improve control reactivity
and Lyapunov–Krasovskii function was constructed for the stability analysis. In another paper,
a controller for emergency braking was presented for collision avoidance in a platoon. In this
third-order dynamical model, a centralized control methodology of the heterogeneous platoon method
was investigated [45]. Here, both Lyapunov–Razumikhin and Lyapunov–Krasovskii theorems were
applied to construct a common Lyapunov function for a constant time headway strategy. Moreover,
a third-order distributed protocol for a heterogeneous vehicle platooning under time-varying delays
and switching topologies was presented [46]. Here, the stability of the closed-loop vehicular network
was achieved using the Lyapunov–Krasovskii theorem and stability under a switched topology was
achieved using the Lyapunov–Razumikhin theorem.

A virtual leader scheme was considered for multiple vehicle platoons to guarantee both
inter-platoon internal stability and string stability in the presence of communication and parasitic
delays [47]. In this study, it was assumed that each leader in the inter-platoon network is
in communication with preceding and subsequent leaders; therefore, resulting topology was
bidirectional virtual leader-following. Furthermore, stability analysis was performed by decoupling
the closed-loop dynamics.

3.4. Platoon Management

Vehicle platoon can result in multiple formation operations such as several platoons working in
the same environment; therefore, multi-platoon management such as inter-platoon and intra-platoon
management is a necessity. To address the multi-platoon management, a leader–follower approach
was employed and several algorithms were proposed to tackle issues such as inter-platoon position
management, intra-platoon position management, platoon joining manoeuvres management and extra
spacing for secure manoeuvring [48]. In another article, a platoon management protocol was developed
for the autonomous vehicles to perform basic manoeuvres such as merge, split and lane change [49].
In this study, some basic platoon scenarios were addressed such as leader leave, follower leave and
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vehicle entry. Here, the information sharing was achieved through single-hop message broadcasting
and finite-state machine approach.

Moreover, considering the longitude control of the autonomous vehicles, a vehicle controller
was proposed for a platoon management in a simulation study [50]. In this study, the effects of
acceleration, inter-platoon speed, and inter-platoon distance and space errors were analysed using the
developed controller. Another study proposed a distributed controller for the multi-lane heterogeneous
vehicles [51]. This controller was based on Laplacian control consisting of a lateral controller for staying
in the lane and longitudinal controller for desired inter-vehicle distance. This graph-based controller
was able to adapt the shape of the curvilinear road shape.

As autonomous vehicles emerge on the road, they will have to interact with other human-operated
vehicles. Therefore, the interaction between autonomous vehicles and the presence of human-operated
vehicles on roads needs to be studied. One publication studied this interaction by applying
second-order consensus control to a vehicle platoon in a single lane roadway [52]. This study proposed
a unified multiclass model for a heterogeneous platoon that analyses the system steady-state errors
and transient-state performance. Furthermore, a controller was developed to obtain string stability in
vehicle platoon using feedback linearization and further extended to attain merging of a two string of
vehicles using time-gap and velocity profiles [53]. Here, input to the controller was given by time-gap
and velocity profiles and string stability analysis was studied for both velocity tracking errors and
time-gap tracking errors. Figure 4 shows the operation of autonomous vehicle platoon.

Figure 4. Autonomous vehicle platoon, adapted from [54].

4. Behaviour-Based Approach

4.1. Basic Principles

Behavioural control is used to achieve coordinated control of a multi-robot system in an unknown
or dynamic environment. The behaviour-based approach serves best when the real world cannot
be accurately modelled or characterized. This approach provides the autonomy to the system to
navigate in complex or cluttered environments by avoiding the offline path planning and using
sensors to obtain instantaneous information of the environment. Furthermore, an environment
for the autonomous vehicles is full of uncertainty and is also unpredictable, noisy, and dynamic.
Therefore, a behaviour-based architecture is the answer to overcoming these difficulties by enabling
real-time processing, relying heavily on sensing without constructing potentially erroneous global
world models [55].

Behaviour-based robots are highly autonomous, mechanically imprecise, equipped with
few computational resources, improve through learning, are programmed with software re-use,
and integrated into the environment [56]. The basic principles of the behaviour-based control can be
described as follows [57]:

• Behaviours are implemented as control laws, either in software or hardware, as a processing
element or as a procedure.

• Each behaviour can take inputs from the robot’s sensors and/or from other modules in the system,
and send outputs to the robot’s effectors and/or to other modules.
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• Many different behaviours may independently receive input from the same sensors and output
action commands to the same actuators.

• Behaviours are encoded to be relatively simple, and are added to the system incrementally.
• Behaviours are executed concurrently, not sequentially, in order to exploit parallelism and speed

of computation, as well as the interaction dynamics among behaviours and between behaviours
and the environment.

In order to enable formation behaviour in a multi-robot system, each robot should maintain
certain distance and angle to other robots. For line or platoon formation, each robot should be able
to move forward and backward and turn left and right to maintain desired velocity and position.
The consensus in behaviour-based approach is said to be achieved on each deviation vector between the
actual vehicle location and the desired vehicle location and the information flow forms a bi-directional
ring topology [20].

A hierarchical architecture consisting of a behaviour module, velocity tuning module and the
supervisory module was proposed for the multi-robot formation control [58]. Here, the behaviour
module was responsible for the formation keeping and obstacle avoidance tasks and implemented
using a fuzzy logic technique. The supervisory module was implemented using a fuzzy neural network
and used to derive the final output from formation keeping and obstacle avoidance task. The velocity
module was responsible for velocity tuning and handled by the fuzzy inference system. Moreover, the
behaviour-based approach for the formation control of a swarm robot was proposed using a fuzzy logic
controller [59]. In this study, obstacle avoidance and formation keeping behaviours were implemented.

4.2. Motor Schema-Based Control

Motor schemas used for mobile robots are sequences of action that accomplish a goal-directed
behaviour. Rather than representing the simplest elementary actions available to the robot, such as
a simple command to a robot actuator, schemas and motion primitives represent a higher-level
abstraction of robot actions, such as avoiding obstacles, avoiding robot, maintaining formation,
and moving to goal. These schemas and motion primitives define control policies that are encoded
with only a few parameters and serve as the basis set, or movement vocabulary, of the robot. Such
primitives are sufficient for generating the robot’s entire repertoire of motions via the combination of
schemas or primitives [60].

A number of formation shapes such as line, column, diamond, and wedge were considered
by implementing several motor schemas such as move-to-goal, avoid-static obstacle, avoid-robot
and maintain-formation [61]. These schemas were used to implement the overall behaviour for
a robot to move to a goal location while avoiding obstacles and collisions with other robots and
remaining in the formation. In this study, a comparison between three formation position determination
techniques, unit-centre-references, leader-referenced and neighbour-referenced were carried out and
advantages and disadvantages were discussed regarding these three techniques. In another study,
a distributed layered formation control framework to guide the robots as a whole in an unknown
environment by avoiding obstacles and collision between robots was developed [62]. In this study,
a leader–follower approach for formation control and behaviour-based approach for obstacle avoidance
was implemented and dynamic role switching of the leader was proposed.

The formation of the swarm of robots was considered where two important formation control
problems, efficient initial formation and formation control while avoiding obstacles were solved [63].
For initial formation control, a classification-based target searching algorithm was proposed. Here,
the formation control while avoiding obstacles was attained by implementing five different behaviours
such as moving to the goal, avoiding obstacles, wall-following, avoiding robot, and formation
keeping. Another article proposed a decentralized behaviour-based formation control and obstacle
avoidance algorithm for multiple robots in which information exchange was considered only between
neighbouring robots [64]. In this study, collision avoidance was obtained by determining the avoidance
angle using the distance between obstacles as well as the formation generation behaviour being
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obtained by selecting the leader robot and determining the location in the formation using locations of
other mobile robots and formation matrix.

4.3. Artificial Potential Field

In the artificial potential field (APF) method, the mobile robots have two fields generated by the
goal and obstacles in search spaces. These two fields are the repulsive force field generated by obstacles
and the attractive force field generated by goals. These forces are stronger close to the obstacles or goal
and have less effect at a distance. In this method, the goal location gains an attractive force to it, while
the obstacles produce a repulsive force on robots. The resultant forces (the sum of all forces) of the
fields on the robots are used to determine the robots’ motion and speed and the direction of travel
while avoiding a collision.

APF is proved to be a good algorithm for obstacle avoidance and is employed for the formation
problem. In a simulation based study, an algorithm was developed for formation control and obstacle
avoidance using second-order consensus control and a modified APF method where both fixed and
switching topology were considered [65]. In another paper, an APF approach was employed for the
cooperative merging manoeuvre using a longitudinal control scheme [66]. In this study, a single
controller was able to perform the different tasks such as vehicle following, gap closing, obstacle
avoidance and platoon merging.

Formation generation through virtual nodes was proposed where a robot converges to virtual
nodes under the velocity matching to attain formation [67]. In this study, a distributed formation control
algorithms were proposed to guarantee the stability of the formation using a Lyapunov approach
meaning that robots converge to a desired position under the velocity matching, thus maintaining
the formation. In this paper, four algorithms were proposed for the formation control and they are
formation connection control algorithm, collision avoidance algorithm, obstacle avoidance algorithm
and target tracking algorithm. In formation connection control, the attractive force fields are created to
drive free robots to move towards their desired positions. For collision avoidance, a local repulsive
force field was created. For obstacle avoidance, the rotational force field was combined with the
repulsive force field surrounding the obstacle to drive the robot to escape obstacles without collisions.
For target tracking, a leader robot is selected based on minimum distance from target and then the
leader leads the formation to track the moving target.

An adaptive approach for formation control of a swarm of multi-robots was proposed using
a potential field method and artificial neural networks (ANN) [68]. In this study, three potential fields
were considered: obstacle field, swarm robots field and target field as well as ANN were implemented
to optimize the parameters of the potential field method. Another study proposed a distributed hybrid
control architecture based on APF and MPC for the vehicle merge and platoon split operations [69].
In this method, an APF model was established capable of describing the mutual effect and collaboration
between a vehicle and its surrounding environment and then an MPC controller incorporating APF
was presented to accomplish the path planning and motion control synchronously.

A two-stage formation tracking controller was proposed for mobile robots with limited sensing
ranges by incorporating bump functions with potential function and using the backstepping
technique [70]. Here, robots’ heading and velocity were used as a control input for the task of
position tracking and collision avoidance during the first stage and robots’ angular velocity was used
as a control input to stabilize the error between the actual robot heading and its immediate value at
the origin.

4.4. Flocking

Flocking describes the behaviour of a group of flying birds, schooling of fish or swarming
behaviour of insects. Flocking control mainly includes three behaviours: collision avoidance also
known as separation, velocity matching also known as alignment, and flock centering also known as
cohesion [71]. Here, velocity matching is a vector quantity, referring to the combination of heading
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and speed. Collision avoidance is a separation behaviour to avoid overcrowding and collision with
each other, whereas flock centering makes robots be near the center of the flock or nearby flockmates.

The flocking problem could be viewed as a subcase of the formation control problem, requiring
robots to move together along some path in the aggregate, but with only minimal requirements for
paths taken by specific robots [72]. Compared with flocking, formations are stricter, requiring robots
to maintain certain relative positions as they move through the environment. Therefore, this section
considers flocking and formation control for multiple mobile robot systems.

One paper established a connection between formation control and flocking behaviour for multiple
nonholonomic kinematic agents using algebraic graph theory and Lyapunov stability analysis [73].
Here, it was shown that when inter-agent formation objectives cannot occur simultaneously in the
state-space then, under certain assumptions, the agents’ velocity vectors and orientations converge
to a common value at steady state, under the same control strategy that would lead to a feasible
formation. Furthermore, using LaSalle’s invariance principle, it was proved that agents converge to
the desired configuration and all agents have a common orientation.

Inspired from the flocking behaviour, an algorithm for nonholonomic vehicles was derived to
realise the application of flocking control in structured environments such as roads and highways [74].
In this paper, a virtual vehicle was employed to linearise the nonholonomic car model and LaSalle’s
invariance principles were utilized to prove the convergence of the entire system. Furthermore,
simulation results showed that multiple cars were able to achieve steady formation. In another
publication, a distributed formation control algorithm was proposed for a multiple wheeled mobile
robot in a free space environment [75]. In this work, LaSalle’s invariance principles were used for
the stability analysis. Moreover, simulation results showed that the proposed method can achieve
a desired shape of the formation while keeping the same velocity and heading angle.

A single control architecture was derived for the formation control of mobile robots consisting of
three controllers: path planning, flocking and formation controllers [76]. In this work, flocking provided
the asymptotic stability for formation control and formation shape was achieved by a synchronizing
velocity vector of individual vehicles. In another publication, considering the problem of decentralized
flocking and global formation building of the group of wheeled robots, a randomized decentralized
navigation algorithm was presented where autonomous vehicles move in the same direction with
the same speed, thus forming a formation [77]. Here, each robot did not know a priori its position in
the desired configuration, and the robots attained consensus on their positions via local information
exchange. In this paper, a consensus for formation building was achieved through variables of speed,
heading and mass centre of the formation.

4.5. Swarm Intelligence

Swarm robotics refers to the application of swarm intelligence techniques where a desired
collective behaviour emerges from the local interactions of robots with one another and with their
environment. Swarm intelligence has great potential for implementation in vehicular traffic of the
CAVs due to their ability to control the group of robots. There are numbers of algorithms inspired by
swarm intelligence. References in Table 1 include comprehensive detail on the original algorithms
and their survey papers. Note that there are a modified, hybrid and advanced version of these basic
algorithms and used in many fields besides mobile robotics. Each of these algorithms have their own
mathematical models and can be assessed through references provided in Table 1.
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Table 1. Theoretical detail of algorithms and their survey papers.

Algorithms Algorithm Details Survey Papers

Particle Swarm Optimization (PSO) [78,79] [80,81]
Ant Colony Optimization (ACO) [82] [83]

Artificial Bees Colony Optimization (ABCO) [84,85] [86]
Artificial Fish Swarm Algorithm (AFSA) [87,88] [89]

Bacteria Foraging Optimization (BFO) [90] [91]
Glowworm Swarm Optimization (GSO) [92] [93]

Firefly Algorithm (FA) [94] [95]
Bat Algorithm (BA) [96] [97]

Grey Wolf Optimizer (GWO) [98] [99]

4.5.1. Exploration and Exploitation

To achieve good performance from the algorithms, a balance between exploration and exploitation
process is an important requirement that depends on algorithms’ parameters. Exploration is the process
to explore the search space efficiently on a global scale, whereas exploration can generate the diverse
solution far from the current solution [100,101]. The advantage of exploration is the ability to achieve
global optimality and to avoid getting trapped in a local mode. The disadvantage of exploration is the
slow convergence, and it is computationally expensive because many new solutions can be far from
global optimality. On the other hand, exploitation is a local search process and uses local information;
therefore, a new solution generated by the exploitation is better than the existing ones. The advantage
of exploitation is the high convergence rate—however, at the cost of getting trapped in a local optimum.
Therefore, more exploration and a little bit of exploitation results in a slow convergence and more
exploitation and little bit of exploration results in a fast convergence, but chances of finding a true
global optimality are low [100]. Thus, this balance depends on algorithm parameters setting and
tuning as shown in Table 2.

Table 2. The balance between exploration and exploitation can be handled by these parameters.

Algorithms Algorithm Parameters

PSO Inertia Weight, w
ACO Pheromone evaporation rate (Good at exploring)

ABCO Distance between food source (Good at exploring)
AFSA Visual and step
BFO Run length
GSO Euclidean Distance
FA Attractiveness (Good at exploring)
BA Frequency, loudness and pulse emission rates

GWO a and A

4.5.2. Swarm Intelligence and Formation Control

A piece of literature on the implementation of swarm intelligence based algorithms in robot
formation control is limited. PSO is one of the first algorithms and implemented most compared to
other swarm intelligence based algorithms. A formation and coordination task was carried out using
PSO where ground robots were simulated for the forest fire scenario [102]. Here, the simulation results
showed that, with an adequate set of parameters, it was possible to get satisfactory strategic positions
for a multi-robot system’s operation using PSO. Moreover, cooperative PSO and distributed receding
horizon control (RHC) scheme were incorporated for multi-robot formation control in which robots
were able to track a reference trajectory while maintaining formation [103].

In another publication, a distributed MPC scheme incorporating cooperative PSO was proposed
for multi-robot formation control problem [104]. In this study, the Nash equilibrium strategy was
considered and robots were able to track the reference path while maintaining the triangle formation.
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Furthermore, a hybrid approach of control parametrization and time discretization (CPTD) and PSO
was proposed for formation reconfiguration of multiple wheeled robots [105]. In this study, a group of
three ground robots were tested for the proposed algorithm.

A research was conducted on the intelligent vehicle navigation problems for path planning and
vehicle guiding to the target position [106]. In this work, a vehicle dynamic method and PSO were
employed for the testing of behaviour coordination problems such as lane keeping, lane changing
and overtaking. Moreover, a cooperative driving and vehicle platooning problem were addressed
using PSO by proposing algorithms for platoon reorganisation and platoon control [107]. In this article,
vehicles can choose to accelerate to join in the preceding platoon or decelerate to depart from the
current platoon.

A distributed and dynamic graph-based formation control approach was presented for vehicles to
join, leave, or change lanes without affecting the stability of the convoy. Here, PSO was implemented
to optimize the parameters of the control law (lane keeping and obstacle avoidance) and to reduce the
overall formation control errors [108]. In this paper, a vision sensor was used for the lane keeping and
LIDAR was used for the obstacle avoidance. In another study, a consensus algorithm and PSO were
employed to maintain formation and explore the unknown static environment [109]. Here, a consensus
algorithm was based on graph theory, and positions were shared to achieve consensus.

ACO was used to address the reformation problem in the multi-agent system in which recursion
algorithm was proposed to reduce the distance travelled by each agent during reformation process [110].
Moreover, ACO was implemented for the formation control of swarm robots by implementing ants
and pheromone level as software agents [111–113]. Here, the first agent calculates the location of the
conceptual barycentre of the formation and all the locations for the robots to occupy, whereas the
second agent physically drives the robots to the locations to compose the formation.

In a comparative study, a formation control and obstacle avoidance problems were studied using
BFO and PSO in which BFO resulted in good formation performance with low computation time and
PSO produced optimal trajectory but avoided the formation [114]. BA was used for the formation
reconfiguration of multi-robot systems in which the CPTD method was applied to convert time optimal
formation reconfiguration problem into a parameter optimization problem [115]. Here, BA was used to
get the control law. In this study, a comparison was made between three different methods: BA-CPTD,
CPTD and line-of-sight in which BA-CPTD was able to derive a better result.

In another study, inspired from the swarm intelligence, a decentralized platooning concept
was proposed for CAV platooning where a spring-mass-damper system was considered for platoon
formation and evolution [116]. In this study, a platoon formation was achieved via three zones:
attractive, alignment and repulsion zone.

5. Virtual Structure Approach

5.1. Basic Principles

A virtual structure approach is targeted to address the problem of maintenance of a geometric
configuration during movement in cooperative robotics. As per [117], a virtual structure is a collection
of elements, e.g., robots, which maintain a (semi) rigid geometric relationship to each other and to
a frame of reference. The merit of virtual structure approach can be described as follows [117]:

• Capability of achieving high-precision control.
• Inherently fault tolerant during the failure of robots by maintaining formation.
• No need to elect leader robot.
• Reconfigurable for different kinds of virtual structures with no modification.
• Can be implemented in a distributed fashion with no increase in communications from

a centralized implementation.
• No explicit functional decomposition.
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Inspired form the above-mentioned centralized method, a decentralized virtual structure approach
was proposed to achieve the following characteristics [7]:

• A decentralized framework for a large number of agents/robots and for a strict limitation on
inter-vehicle communication.

• Integration of formation feedback in the framework to improve group robustness.
• Ability to prescribe a group manoeuvre directly in the framework.
• A framework to guarantee high precision for maintaining formation during manoeuvre.

In this decentralized approach, each robot in the formation instatiates a local copy of the
coordination vector in the virtual structure framework. The local instatiation of the coordination vector
in each robot is then synchronized by communication with its neighbours using a bidirectional ring
topology. Regarding consensus in a decentralized virtual structure approach, it is said to be reached
on each instantiation of the virtual structure states and the information flow forms a bidirectional ring
topology [20].

5.2. Virtual Structure Controllers

A vehicle convoy is formed when multiple CAVs collaborate over multiple lanes by maintaining
a pre-designed formation. To control this type of convoy, a virtual structure approach was adopted
by separating the convoy control problem into a high-level virtual structure control problem and
a low-level vehicle control problem [118]. Here, the MPC controller was developed to generate
reference trajectories by considering longitudinal and lateral offsets and a nonlinear MPC controller
was implemented for autonomous driving by integrating lane-keeping and collision avoidance
behaviours. Another publication proposed the architecture of adaptable virtual structure formation
control by developing a formation tracking controller for the nonholonomic mobile robots to track the
time-varying formation configurations [119]. In this work, two controllers were derived, a tracking
controller to achieve stable tracking control performance during the transitions between two formation
configurations and a formation controller to generate online formation reference and make robots
converge to a given formation pose.

A stabilising control method was proposed using the flexible virtual structure approach
that ensured the non-collision among the agents in formation and preserved a desired shape
configuration [120]. In this work, three control laws were used to perform multi-robot navigation,
a formation keeping and inter-robot collision avoidance law, an attractive control law to guarantee the
convergence to the desired final configuration and an obstacle avoidance law. Moreover, a controller
was developed to solve the problem of formation control of multiple wheeled mobile robots by
guaranteeing that the derivative of the Lyapunov candidate is a negative definite meaning that the
controller is robust against to disturbances [121]. In this work, a triangular formation was achieved on
a circular track using three robots.

A formation control strategy was proposed for nonholonomic intelligent vehicles based on
virtual structures approach and consensus technique [122]. Here, formation control was achieved by
employing target tracking and formation tracking strategies. A target tracking strategy was responsible
for tracking the target points of the virtual structure and formation control strategy was responsible
for tracking the trajectory by collecting velocity and pose messages. The developed controller was
able to improve the convergence speed and increase the stability of the system by employing the
leader-following consensus protocol.

6. Remaining Challenges

6.1. Technical Challenges

Here, several technical challenges are presented that needs to be solved to implement the CAV
technology. These challenges play a vital role when developing algorithms for the collaboration
between the autonomous vehicles.
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6.1.1. Communication

A wireless communication is a critical factor in CAV operation. Usually, a vehicle transmits
messages containing speed data, sensor readings and current position to other vehicles and this
is done using broadcasting or multicasting and by employing handshaking protocol. A wireless
communication can increase errors due to not transmitting and receiving messages on time.
Furthermore, a wrong message received at the wrong time can result in the error. So far, the problems
with communication between autonomous vehicles have included missing messages, wrong messages,
garbage contents, failure of the communication device, and delay in transmission. To solve this
problem, a communication topology should be targeted towards connecting at least two vehicles
during poor bandwidth or bad weather. Furthermore, sensors can be used to guide vehicles during
complete communication loss such as sensor-based navigation.

6.1.2. Error Accumulation

An error can increase when transmitting messages to other vehicles. If a vehicle has a noisy, false
positive or false negative sensory data, then it will get transmitted to the second vehicle. The second
vehicle will add its own noisy, false positive or false negative sensory data and will transmit to the third
one. This results in an error accumulation thus coordination between autonomous vehicles cannot be
achieved. One way to minimize the error accumulation would be to compare vehicle’s sensor data
with other vehicles’ sensor data and to use string stability analysis.

6.1.3. Deadlock and Livelock

A deadlock and livelock situation may arise during the behaviour-based navigation of multiple
autonomous vehicles [123,124]. A deadlock refers to an autonomous vehicle transition when few or
many robots are unable to move physically. In this situation, an autonomous vehicle has outstanding
operations to complete, but no operation can make progress. Deadlock can arise at the intersections
or to avoid a collision when each operation has acquired a shared resource (a free lane to move) that
another operation needs. Therefore, no vehicle can move since all vehicles are waiting for a shared
resource which is being held by another vehicle. A livelock is similar to a deadlock situation. In this
situation, robots move to allocate shared resource but fall back to the same situation repeatedly, thus
making no meaningful progress. A livelock can arise at the intersections where all vehicles keep
moving back and forth by staying at the same location. Therefore, a resultant algorithm should be able
to address these issues.

6.1.4. Limit on Maximum Scalability

The maximum scalability refers to the number of maximum autonomous vehicles any multi-robot
system or network can employ. The multi-robot algorithms must be scalable, but a limit on the
scalability should be considered as an important parameter. This limit can have a significant impact on
the working principles of the CAVs. A higher limit can impose significant drawbacks such as:

• Communication loss or delay due to a time taken for a signal or message to transmit in a large
vehicular network.

• Errors accumulation as explained above.
• Higher time to derive decision (consensus control) at every situation and moment.

Moreover, setting an upper limit will create multiple multi-robot systems interacting with each
other. These systems should be able to work together by cooperating with each other.

6.1.5. Cybersecurity

A security of such networks is another challenge that needs to be solved. Basically, CAVs
are a collection of networked sensors and computers connected wirelessly to other vehicles and
infrastructure; therefore, this network must be safe from online attacks by the intruders or hackers.
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6.2. Implementation Challenges

Here, several implementation challenges are presented that needs to be addressed for the
CAV operation. These challenges play a vital role when evaluating developed algorithms for the
autonomous vehicles.

6.2.1. Platoon Formation

A platoon based formation control is useful when vehicles need to maintain distance from each
other and in the traffic conditions. A dynamic platooning should be targeted by addressing several
scenarios such as:

• If any vehicle leaves the formation or joins another platoon, other vehicles should rearrange their
position to maintain the formation by feeling the gap in the formation.

• If a leader leaves the platoon, then it should not affect the formation but a subsequent vehicle
inside the platoon should take the role of the leader.

• This platoon based formation can also have a fixed number of vehicles that can be allowed and,
if the number increases, then another platoon should be created for autonomous vehicles.

• The above discussed problems can be extended to the multi-lane platoon and two-way traffic
platoon formation.

• Moreover, different platoons and vehicles inside the platoon should share information with each
other. This is helpful for other vehicles to join another platoon.

6.2.2. Lane Merge and Change

Lane merging and changing of the vehicles is another key area to target which requires cooperation
between vehicles in uncoordinated traffic environment as shown in Figure 5. For these operations,
estimating other vehicles’ intention and information sharing between vehicles plays a vital role.

Figure 5. Lane merge scenario [125].

6.2.3. Emergency Vehicle Response

Giving way to emergency vehicles such as ambulances and police vehicles is another challenge
that requires developing specific controllers for autonomous vehicles. If these vehicles encounter
existing vehicle formations, then what should be the behaviour of the formation and vehicles inside the
formations. Currently, human drivers stop by the side and give way to emergency vehicles. This same
behaviour needs to be implemented for the CAVs.

6.2.4. Intersection Management

All CAVs need to face various intersections, roundabouts or junctions during their journey.
These junctions can have different structures as shown in Figure 6. Vehicles arriving and leaving at
these intersections should cooperate at the intersection crossing by deciding which vehicle should
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leave first. Furthermore, traffic during the intersection crossing would be higher; therefore, deadlock
and livelock situations need to be addressed for this scenario. Regarding the vehicle formation, some
vehicles might join new roads as per their destinations; therefore, new platoons should be formed just
after crossing the intersection.

Figure 6. Junctions, adapted from [126].

7. Conclusions

In this paper, many academic publications are reviewed to understand the current developments
on CAV technology, including controller design and stability analysis. The leader–follower approach is
found to be used by many researchers for the vehicle platooning problem. A second-order consensus
control is widely targeted to reach the consensus, whereas third-order consensus control is a growing
field. Furthermore, the string stability theorem is used to evaluate the platoon formation performance.
It can be observed that simulation work is completed to prove the derived controllers and theories and
few publications target actual implementation on mobile robots.

Moreover, the challenges discussed in this paper require extensive testing before implementing the
CAV technology for general uses. Whatever approach one chooses to implement out of these discussed
methods, these challenges remains the same and need to be solved. On the other hand, the application
challenges provide a good ground to analyse the developed algorithms. After reviewing the vehicle
formation control field using several approaches, it can be concluded that:
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• Few controllers and algorithms in a leader–follower approach targets third-order consensus
control and real robot experiments. Furthermore, a dynamic role changing leader should be
targeted in a leader–follower approach.

• Considering the swarm intelligence based algorithms, it can be observed that they can handle
a population of robots, but they do not offer formation control ability; therefore, new parameters
or another algorithm should be implemented along with these algorithms.

• A machine learning approach is not applied to the formation control problem compared to other
techniques and deep learning remains unexplored for multi-robot formation control problems.
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