https://www.nrel.gov/docs/fy19osti/70380.pdf

Manufacturing Competitiveness Analysis for PEM and Alkaline Water Electrolysis Systems

Mark Ruth (Presenter), Ahmad Mayyas, and Maggie Mann

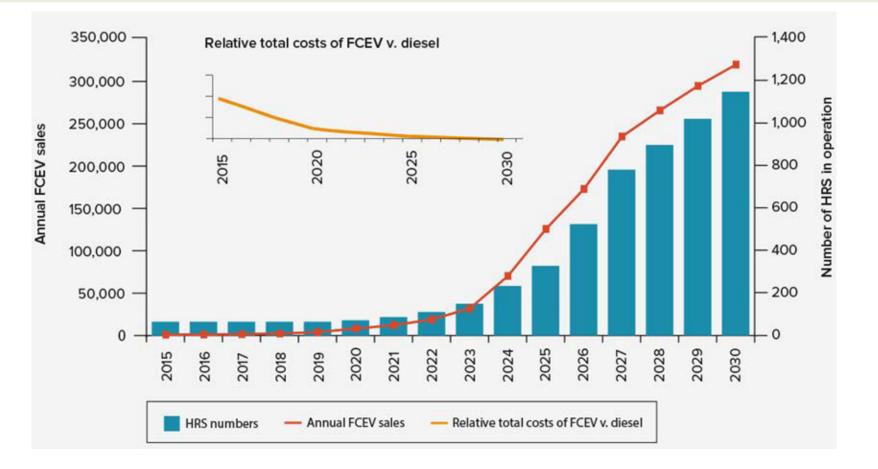
National Renewable Energy Laboratory

Fuel Cell Seminar and Energy Expo

11/08/2017

Agenda

Introduction


- **III** PEM Electrolyzer Functional Specs & System Design
- III. Alkaline Functional Specs & System Design
- Cost Analysis for PEM and Alkaline Electrolyzer
- v. Concluding Remarks

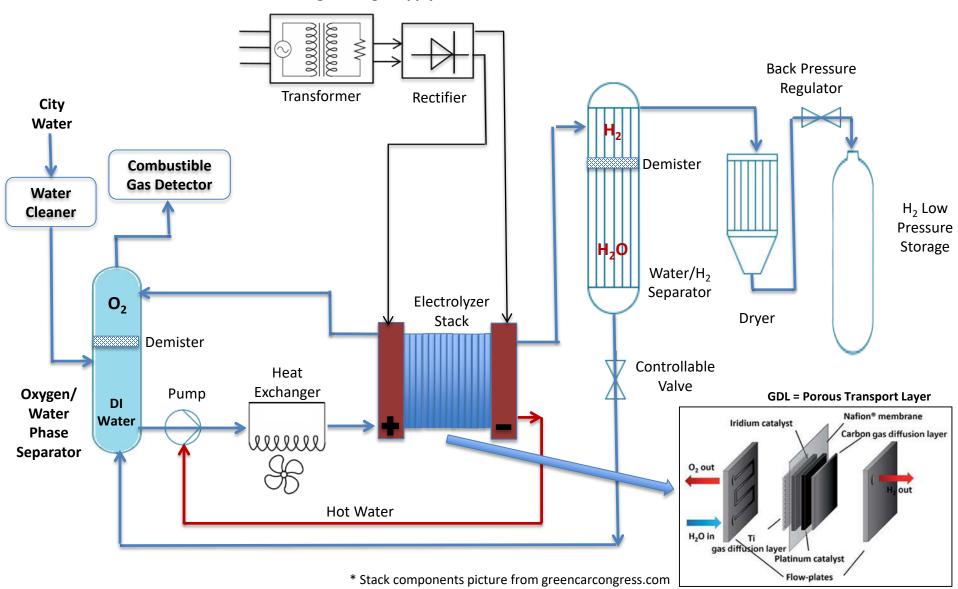
Introduction

CEMAC – Clean Energy Manufacturing Analysis Center

Motivation: Infrastructure for Vehicles

- 2020 sales/production estimate >30,000 FCEVs
- 2030 sales/production estimates >250,000 FCEVs on roads
- Is hydrogen infrastructure ready to support this number of FCEVs?

Comparison between PEM and Alkaline Electrolyzers


Characteristics	Alkaline	PEM	Unit	Notes
Current Density	0.2 - 0.7	1.0 - 2.2	A/cm ²	
Operating Temperature	60 - 80	50 – 84	°C	
Electricity Consumption (Median)	50 – 73 (53)	47 – 73 (52)	kWh/kg-H ₂	Electrolysis system only. Excluding storage, compression and dispensing
Min. Load	20 - 40%	3 – 10%		
Startup Time from Cold to Min. Load	20 min - 60+	5 – 15	minutes	
System Efficiency (LHV) (Median)	45-67% (63%)	45 – 71% (63%)		
System Lifetime (Median)	20-30 (26)	10-30 (22)	Year	
System Price	\$760 – \$1,100 (\$930)	\$1,200-\$1,940 (\$1,570)		Including power supply, system control and gas drying. Excluding grid connection, external compression, external purification and H ₂ storage

IIPEM Electrolyzer - Functional Specs & System Design

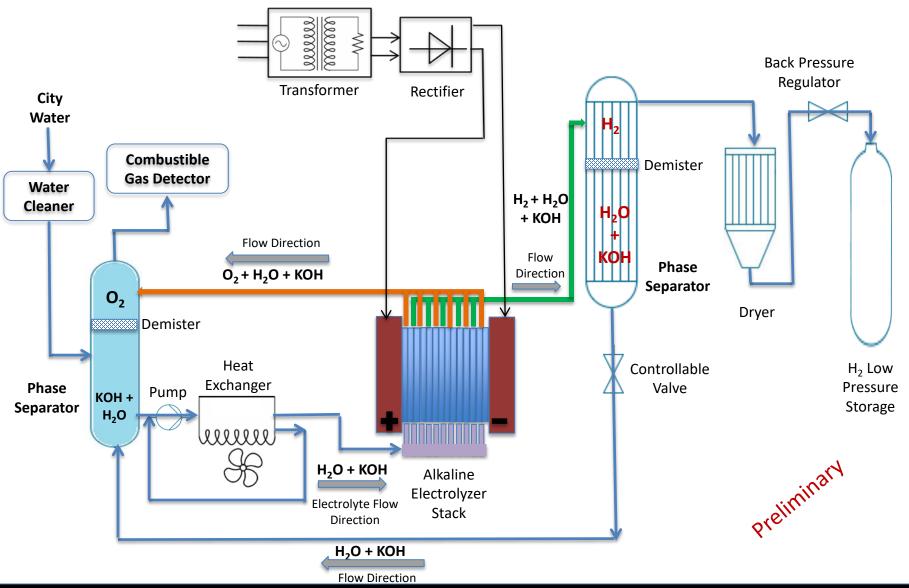
PEM Electrolyzer System Design

High Voltage Supply

Derived Functional Specifications

														31.0	m									
Stack Power	10	20	50	100	200	500	1,000	2,000	5,000	10,000	kW	T	٠	۲	۲	•		•						
single cell amps		1224 A												27.35	7.35 cm									
current density		1.80 A/cm ²										<a>												
reference voltage		1.619 V									V	26.1 cm												
power density					2.9	13					W/cm ²	•	CCM Active											
Pt-Ir loading- Anode					7.	0					g/m²		Area=680 cm ²					31.0 cm						
PGM loading Cathode					4.0	0					g/m ²	26.1 cm					•							
single cell power					198:	1.0					W				20.1 (1)	' '								
Cells per system	5	10	25	50	101	252	505	1010	2524	5048	cells	•												
stacks per system	1	1	1	1	1	1	2	4	10	20	stacks						≚							
cells per stack	5	10	25	50	101	252	252	252	252	252	cells		•	•	•	•		¥						

Plate area= 957 cm²


Part	Assumptions	Notes
Membrane	Nafion 117 (Purchased)	PFSA (PEEK, PBI)
Pt	Pt-price= 1500/tr.oz	DOE Current value
CCM	Spray Coating	Platinum loadings: Anode= 7g/m ² (Pt) Cathode= 4g/m ² (Pt-Ir)
Porous Transport Layer	Sintered porous titanium Ti-price= \$4.5/kg	Porosity=30%
Seal/Frame	Screen printed PPS-40GF or PEEK seal	Seal: 0.635 cm from each side for MEA bonding
Plates	Stainless steel 316L	Coated (plasma Nitriding)

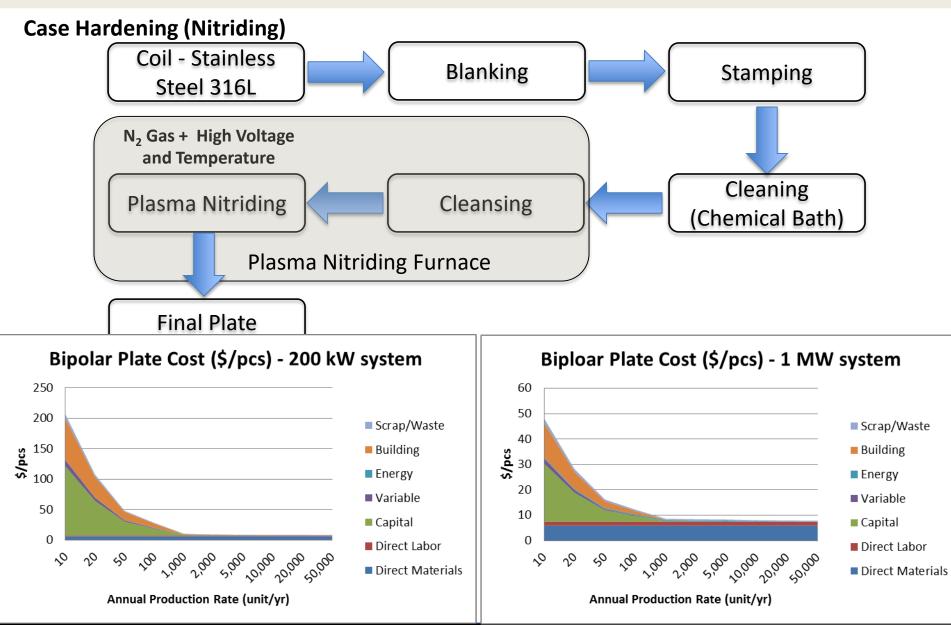
III Alkaline Electrolyzer - Functional Specs & System Design

Alkaline Electrolyzer System

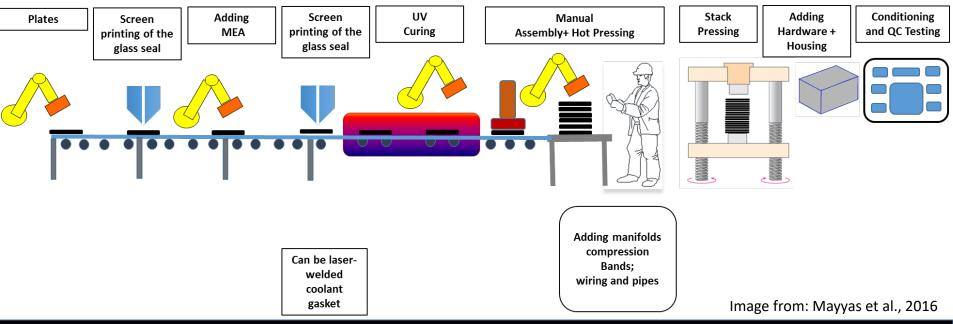
High Voltage Supply

Alkaline Electrolyzer - Functional Specs

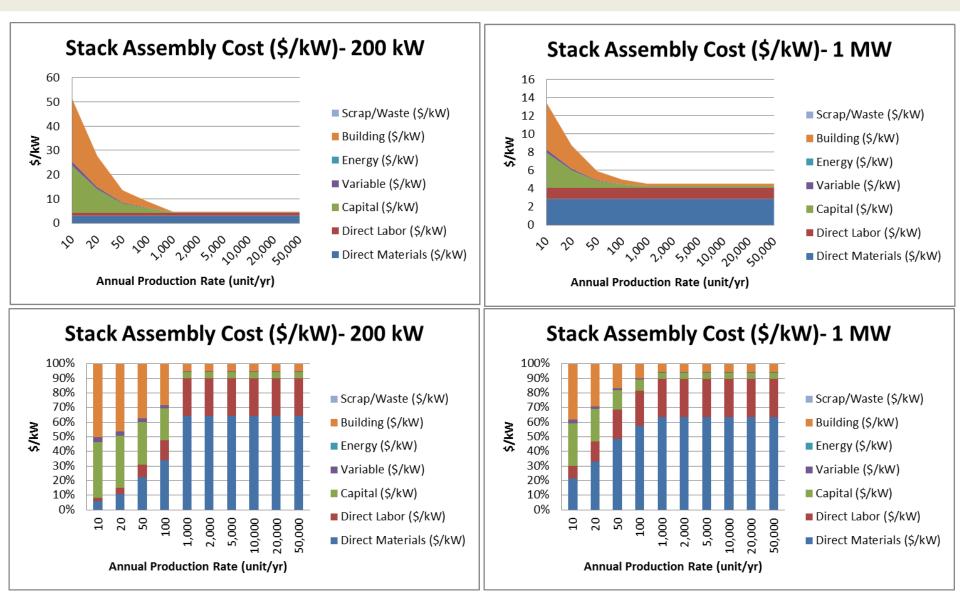
System rated power	10	20	50	100	200	500	1,000	2,000	5,000	10,000	kW
Electrolyte	H ₂ O+ 30% KOH										
Single cell amps	150	150	150	150	150	150	300	300	300	300	А
Current density	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	A/cm ²
Reference voltage	1.68	1.68	1.68	1.68	1.68	Area De	whiad	1.68	1.68	1.68	V
Power density	0.336	0.336	0.336	0.336	0.336	AleaD	Area Doubled		0.336	0.336	W/cm ²
Single cell power	252.0	252.0	252.0	252.0	252.0	252.0	504.0	504.0	504.0	504.0	W
Cells per system	40	80	199	397	794	1,985	1,985	3,969	9,921	19,842	cells
Stacks per system	1	1	2	2	4	10	10	20	50	100	stacks
cells per stack	40	80	100	199	199	199	199	199	199	199	cells


	Part	Materials	Notes
	Membrane	m-PBI	Cast membrane using doctor- blade machine
$O_2 \leftarrow H_2$ 1.47 cm Functional	Electrodes	Raney- nickel	PVD + Leaching to get the required porosity
Cell Design Electrolyte	Porous Transport Layer	Pure Nickel Sheets	Corrosion resistance in alkaline solution
Return 1.47 c	" Frame	PPS-40GF or PEEK	Injection molding
	Plates	Nickel plates	Surface treatment of high purity sheets

PVD: physical vapor deposition


IV Cost Analysis for PEM and Alkaline Electrolyzer

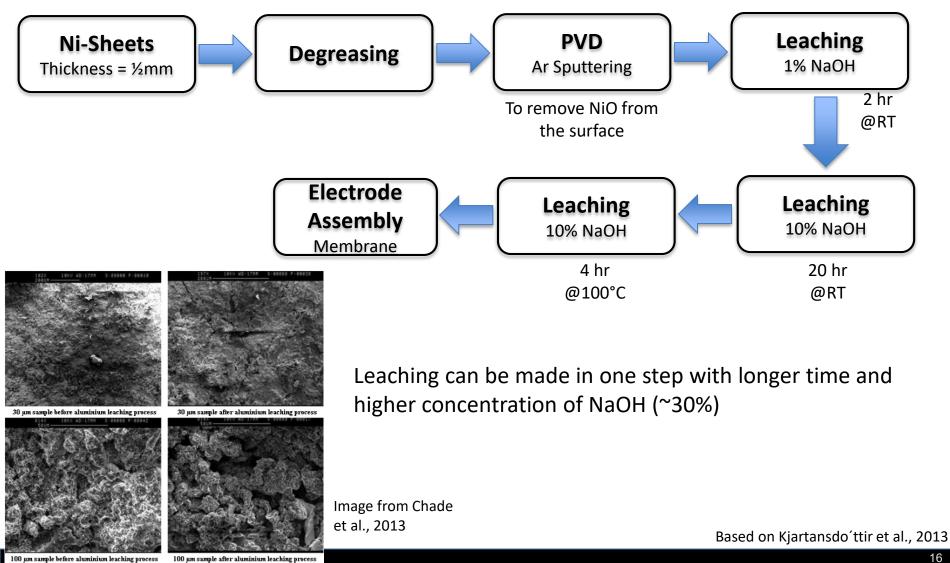
PEM - Bipolar Plate



PEM Stack Assembly

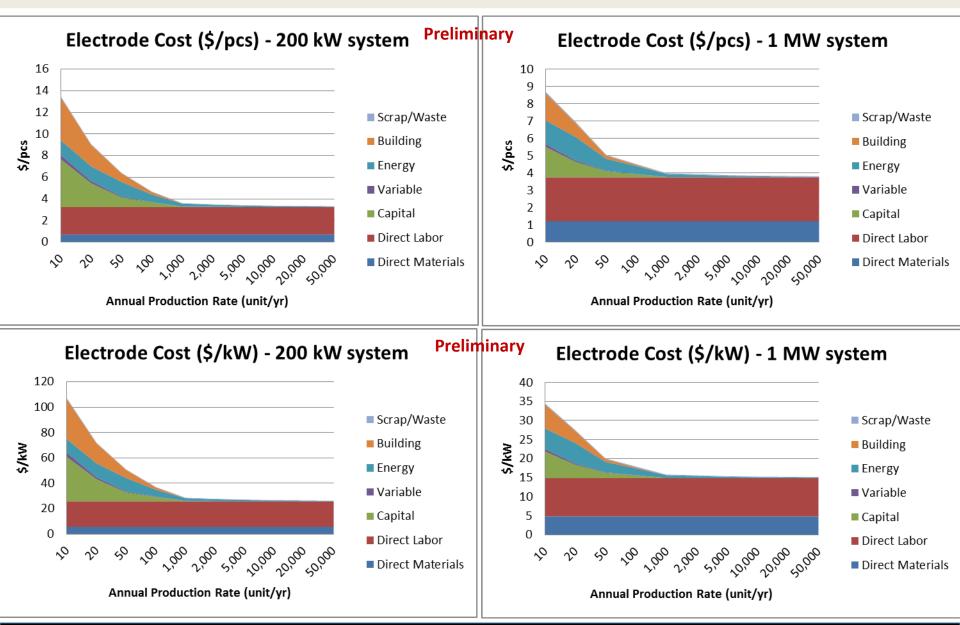
- Semi-Automatic assembly line
- 3 workers/line
- PPS-40GF Adhesive Materials for MEA
- Compression bands or tie rods
- Stainless steel 316L end plates (thickness 30 mm)

PEM – Stack Assembly

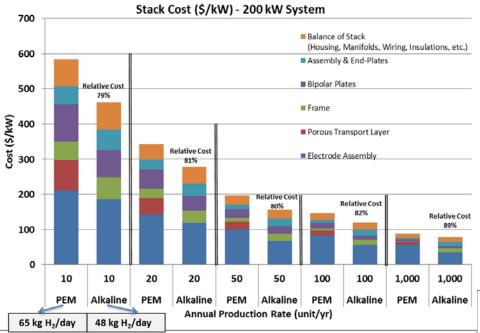

65 kg H₂/day

CEMAC - Clean Energy Manufacturing Analysis Center

385 kg H₂/day

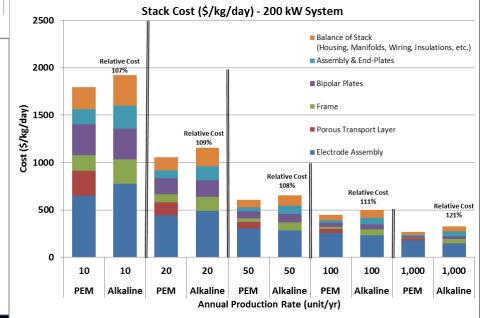

Alkaline - Raney Nickel Electrodes

Process Flow Diagram

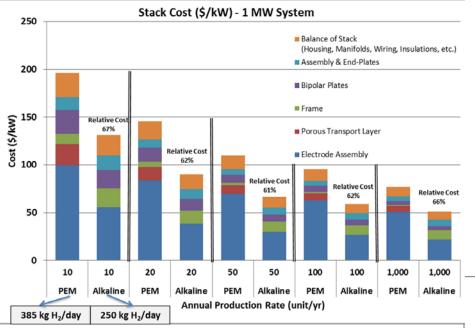


16

Alkaline - Raney Nickel Electrodes

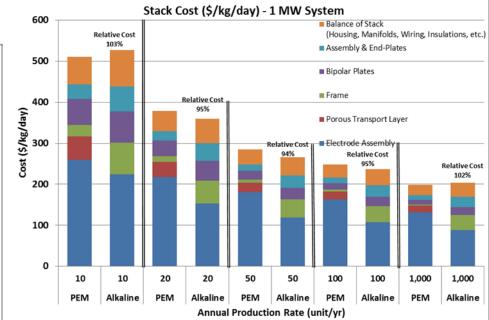


Manufacturing Cost of Electrolyzer Stacks



- Alkaline electrolyzer stacks have larger cost in \$/kg-H₂
- Cost curve for a 200kW system

A comparative cost analysis between PEM and alkaline stacks using hydrogen production rates (not the cost of making hydrogen from the electrolyzers)



Manufacturing Cost of Electrolyzer Stacks

A comparative cost analysis between PEM and alkaline stacks using hydrogen production rates (not the cost of making hydrogen from the electrolyzers)

- Alkaline electrolyzer stacks have larger cost in \$/kg-H₂ basis
- Cost curve for a 1MW system

V Concluding Remarks

CEMAC – Clean Energy Manufacturing Analysis Center

Conclusions

- Alkaline water electrolyzers have lower current and power densities, but have lower initial cost (per kW basis)
- PEM electrolyzers <u>may</u> have lower stack cost in (\$ per Nm³/hr)
- Good similarities in manufacturing processes for PEM and alkaline electrolysis (e.g., membrane casting, plates stamping & coating, end plates, stack assembly, etc.)

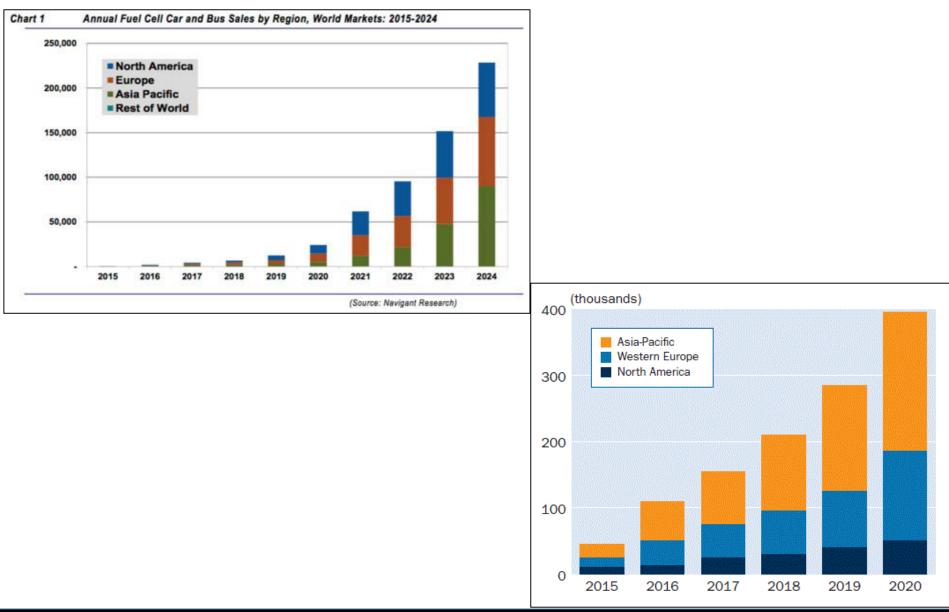
Questions?

Mark Ruth <u>Mark.Ruth@nrel.gov</u>

Ahmad Mayyas <u>Ahmad.Mayyas@nrel.gov</u>

Clean Energy Manufacturing Analysis Center

THANK YOU!


NREL/PR-6A20-70380

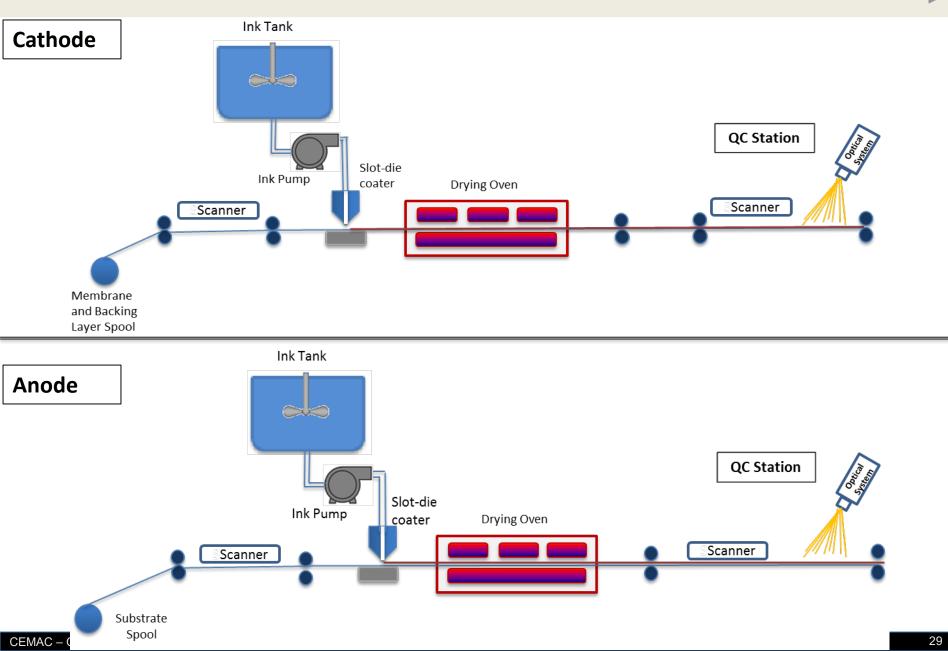
This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Backup Slides

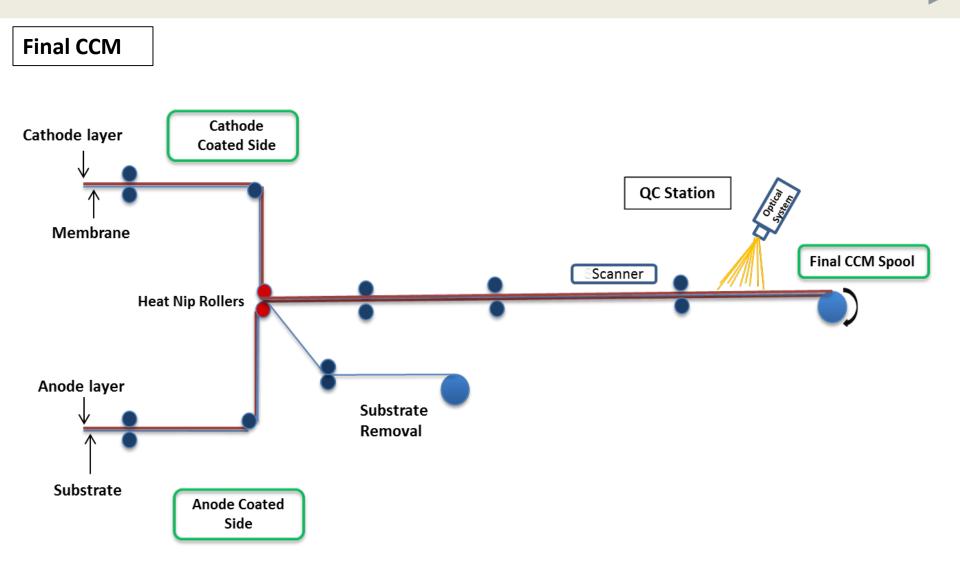
FCEV 2015-2024

International Manufacturer of Onsite Hydrogen Production System

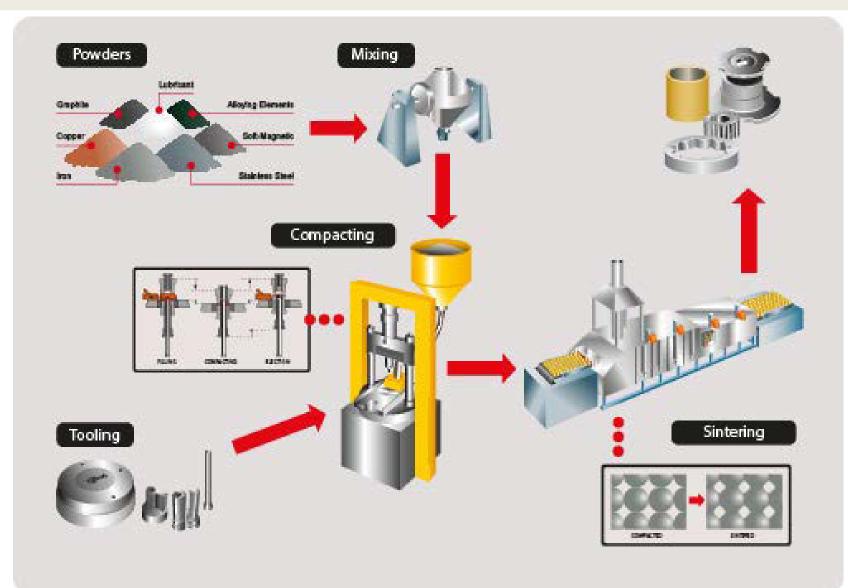
CEMAC - Clean Energy Manufacturing Analysis Center



PEM Electrolysis


PEM - Functional Specifications

			Hydrogenics	Proton OnSite	Proton OnSite		Proton OnSite	Giner	Proton OnSite	Siemens	Units
			HyLYZER™-2	H2	H2	H6	FuelGen12, Series	Merrimack		SILYZER 200 basic	
		PEM (Proton	PEM (Proton	PEM (Proton	PEM (Proton	PEM (Proton	PEM (Proton	PEM (Proton	PEM (Proton	PEM (Proton	
		Exchange	Exchange	Exchange	Exchange	Exchange	Exchange	Exchange	Exchange	• • • • •	
	Electrolysis type	Membrane)	Membrane)	Membrane)	Membrane)	Membrane)	Membrane)	Membrane)	Membrane)	Exchange Membrane)	
	Rated stack Consumption	7.20	14.40	14.00	28.00	40.00	45.00	160.00	250.00	1250.00	kW
	Startup time:				_0.00			millisecond scale		< 10 sec	Sec
	Hydrogen purity (dep. on									10 500	500
	operating point):			99.9995%	99.9995%	99.9995%	99.9995%		99.3-99.8%	99.5% - 99.9%	
		6.70	6 70								kWh/Nm ³
	System Effciency	6.70	6.70	7.30	7.00	6.80	7.50		6.25	5.56	
	Net Prodution Rate	1	2	2	4	6	6	30.59	40	225	Nm³/h
	Net Prodution Rate										
	(scfh)	38	76	76	152	228	228	1162	152	8,550	scfh
	Net Prodution Rate										
	(kg/day)	2.16	4.32	4.31	8.63	12.94	12.95	66.00	86.30	485.46	kg/day
	kW per kg/day ratio	3.34	3.34	3.25	3.24	3.09	3.48	2.42	2.90	2.57	kW per kg/day
				0 to 100% net	0 to 100% net	0 to 100% net					
				product delivery	product delivery	product delivery					
System	Turndown Ratio	0 to 100%		(Automatic)	(Automatic)	(Automatic)		10:1	10-100%		%
	Output pressure	Up to 7.9	Up to 7.9	()	((15	0-40 bar	up to 12 bar	Up to 35	bar
			00 10 110				Potable main			0,000	
	Feed Water						water supply		Deionized water		
	Fresh water demand:	1	1	1.83	3.66	5.5	54		3.4 ltr/hr	1.5	ltr / Nm ³ H2
	Inlet water pressure	0.7-6.9	0.7-6.9	1.5 to 4	1.5 to 4	1.5 to 4	1 to 10		3.4 10/11	1.5	barg
	Relative Humidity	0.7-8.9 0 to 90%	0.7-0.9	0 to 90%	0 to 90%	0 to 90%	1 (0 10				%
	Relative Humidity	208/120,3 phase,4	wire+and 50/60	0 10 90%	0 10 90%	01090%					/0
		Hz 200-260,1 pha	• • •	380 to 480 VAC, 3	380 to 480 VAC, 3	380 to 480 VAC, 3	420-480 VAC, 3				
		50/60 Hz Direct c	· • ·		· ·	,					
	Danna Comala			phase, 50 or 60 Hz	phase, 50 or 60 Hz	phase, 50 or 60 Hz	phase, 60 Hz, 112		4001/40 5011		
	Power Supply	possible upo	on request.				FLA		400VAC 50Hz		
	-				•	Liquid cooled 23.7					
	Cooling strategy	Air Cooled	Air Cooled	Liquid cooled 8.1 kW		kW			Air or Liquid	Air Cooled	
	Operating Temperature	5 to 40	5 to 40	5 to 60	5 to 60	5 to 60	-23 to 46		5 to 35		°C
	Hydrogen quality 5.0:									Optional DeOxo dryer	
	Hydrogen production										
	under nominal load:										
	Life cycle design:									> 80,000 h	
								CE Mark with			
	CE Approved							PED and ASME	Yes	Yes	
								Circular cells			
Other Specs	Other Specs							with 300 cm ²			
2 0			1.30 X 1.00 X	180 cm x 81 cm x	180 cm x 81 cm x	180 cm x 81 cm x					
	Dimensions	0.75 X 0.66 X 1.17	1.25	191 cm	191 cm	191 cm	2.18 X0.84 X1.91		0.85 X 1.05 X 1.65	6.3 X 3.10 X 3.00	mXmXm
	Weight	250	275	682	858	908	900		260	17000	kg
	weight	230	2/5	002	020	500	900		200	17000	<u>~</u> б
A											


CCM Slot-Die Coating Process

CCM Slot-Die Coating Process

Powder Metallurgy for GDL

GDL or Porous Transport Layer

Image source: http://erean.eu/wordpress/powder-metallurgy-and-permanent-magnets/

CEMAC – Clean Energy Manufacturing Analysis Center

Porous Transport Layer = GDL

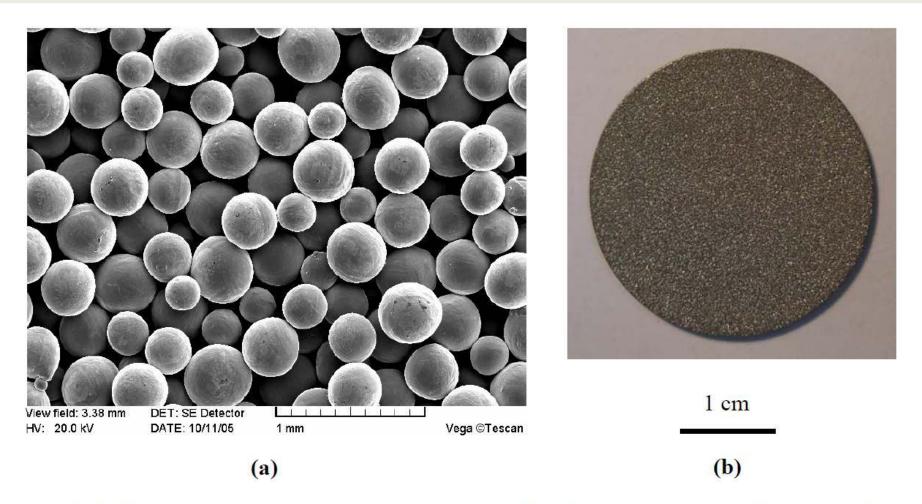
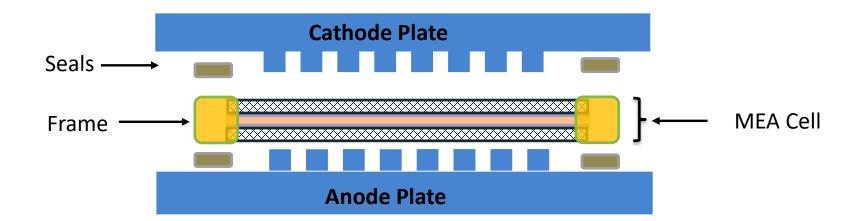
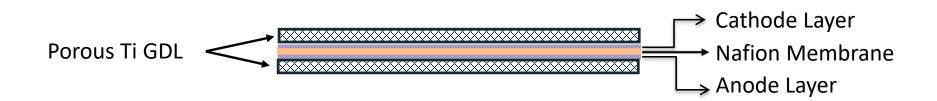
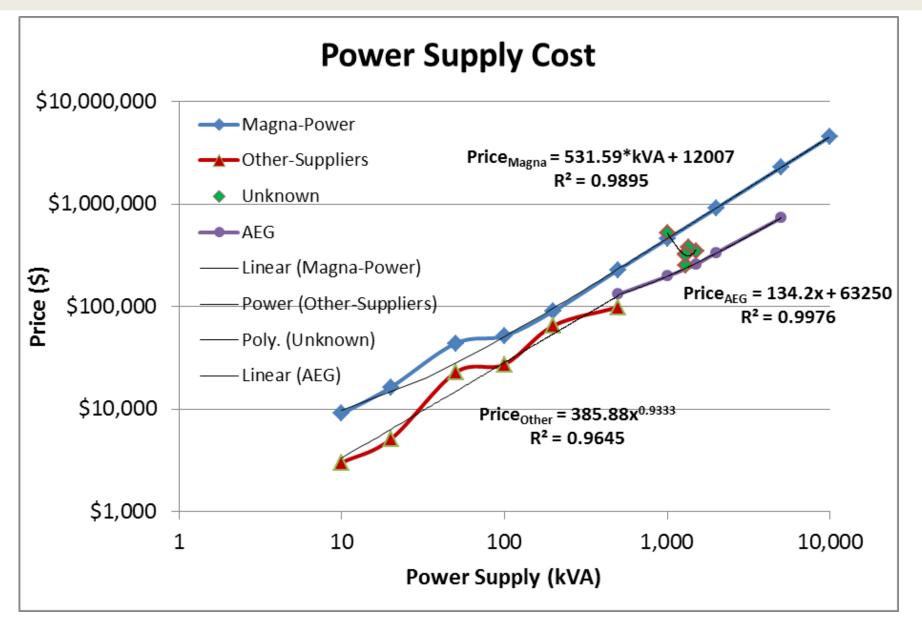
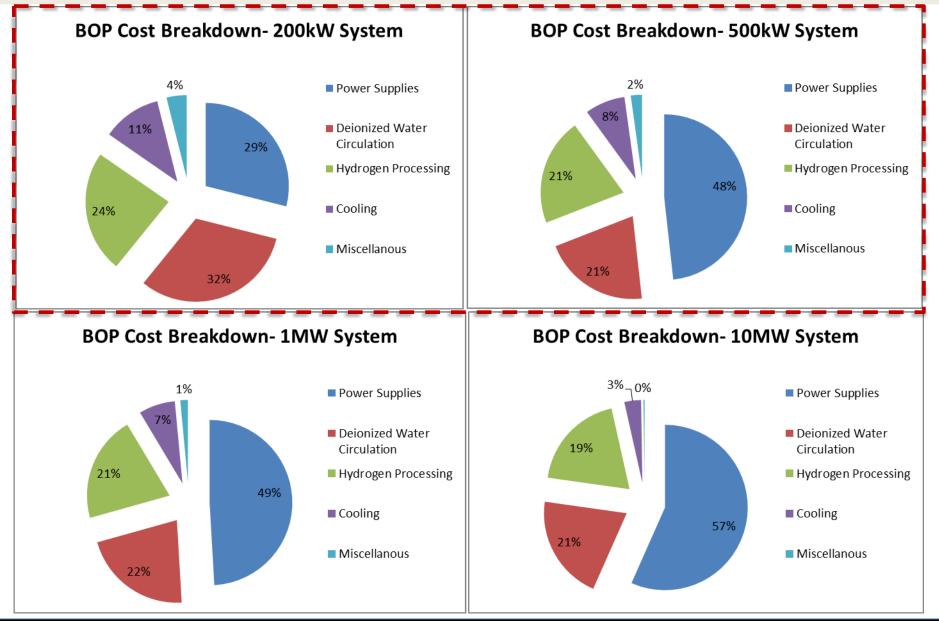




Fig. 2. SEM (a) and optical microscope (b) micrographs of a porous current collectors made of sintered titanium spherical-particles.

Proposed Cell/Plates/Seal Structure




Balance of Plant Cost (Parts Only)

	System Size kW		10	20	50	100	200	500	1,000	2,000	5,000	10,000
							Baseli	ine Cost (\$				
System	Subsystem	Sizing Exponent (if	10 kW	20 kW	50 kW	100 kW	200 kW	500 kW	1 MW	2 MW	5 MW	10 MW
Power Supplies	Power Supply	Quote (AEG)	\$3,000	\$5,080	\$22,733	\$27,33	\$44,000	\$132,000	\$198,000	\$335,500	\$734,250	\$1,405,250
	DC Voltage Transducer	Quote	\$225	\$225	\$225	\$225	\$225	\$225	\$225	\$225	\$225	\$225
	DC Current Transducer	Quote	\$340	\$340	\$340	\$340	\$340	\$340	\$340	\$340	\$340	\$340
									-			
	Total		\$3,225	\$5,305	\$22,958	\$27,556	\$44,225	\$132,225	\$198,225	\$335,725	\$734,475	\$ \$1,405,475
									1			
Deionized Water Circulation	Oxygen Separator Tank	Quote	\$10,000	\$10,000	\$10,000	\$10,000	\$20,000	\$20,000	\$40,000	\$80,000	\$160,000	\$320,000
	Circulation Pump	Quote	\$409	\$647	\$1,538	\$3,34	\$7,053	\$10,000	\$10,962	\$20,000	\$40,000	\$80,000
	Polishing Pump	Quote	\$1,619	\$2,071	\$2,071	\$2,289	\$2,289	\$2,500	\$5,000	\$10,000	\$20,000	\$40,000
	Piping	0.30	\$3,807	\$4,687	\$6,170	\$7,591	\$10,000	\$12,311	\$15,157	\$18,661	\$24,565	5 \$30,243
	Valves, Instrumentation	0.30	\$2,855	\$3,516	\$4,628	\$5,697	\$7,500	\$9,234	\$11,368	\$13,995	\$18,423	\$22,682
	Pressure, temperature, conductivity, flowmeter											
	Class I, Div 2, Group B rating drives up prices											
	Controls	0.60	\$2,000		\$2,000	\$2,000		\$3,031	\$4,595	\$6,964	\$12,068	
	Total		\$20,691	\$22,921	\$26,407	\$30,932	\$48,842	\$57,076	\$87,082	\$149,621	\$275,056	5 <mark>\$511,217</mark>
Hydrogen Processing	Dryer Bed		\$6,366	\$6,366	\$13,860	\$13,860	\$13,860	\$25,000	\$36,589	\$73,178	\$146,356	5 \$292,712
i i jul ogen i lotetoning	Hydrogen Separator	0.70	\$1,051	\$1,707	\$3,241	\$5,26	\$10,000	\$16,245	\$26,390	\$42,871	\$81,418	. ,
	Tubing	0.30	\$1,904	\$2,344	\$3,085	\$3,798	\$5,000	\$6,156	\$7,579	\$9,330	\$12,282	
	Valves, Instrumentation	0.30	\$1,904	\$2,344	\$3,085	\$3,798		\$6,156	\$7,579	\$9,330	\$12,282	2 \$15,121
	Pressure, temperature, conductivity, flowmeter											
	Class I, Div 2, Group B rating drives up prices											
	Controls	0.60	\$362	\$549	\$952	\$1,443	\$2,500	\$3,789	\$5,743	\$8,706	\$15,085	\$22,865
	Total		\$11,586	\$13,309	\$24,223	\$28,165	\$36,360	\$57,346	\$83,880	\$143,415	\$267,424	4 \$478,084
									-			
Cooling	Plate heat exchanger		\$9,000	\$9,000	\$9,000	\$9,000	\$9,000	\$9,000	\$10,525	\$11,675	\$14,742	\$14,742
	Cooling pump	Quote (n=0.67)	\$970	\$1,169	\$1,169	\$1,500	\$1,500	\$2,387	\$3,797	\$6,042	\$11,163	
	Valves, instrumentation	0.60	\$2,000	. ,	\$2,000	\$2,000	. ,	\$3,031	\$4,595	\$6,964	\$12,068	. ,
	Piping	0.60	\$1,000	\$1,000	\$1,000	\$1,000	\$1,000	\$1,516	\$2,297	\$3,482	\$6,034	. ,
	Dry cooler	0.45	\$4,000		\$4,000	\$4,000		\$5,464	\$7,464	\$10,196		
	Total		\$16,970	\$17,169	\$17,169	\$17,500	\$17,500	\$21,398	\$28,679 -	\$38,360	\$59,408	3 <mark>\$80,979</mark>
Miscellanous	Valve air supply – nitrogen or compressed air	n/a	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000
	Ventiliation and safety requirements	n/a										
	Combustible gas detectors	n/a	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000
	Exhaust ventiliation	n/a	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000	\$2,000
	Total		\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000	\$6,000
	Grand Total (\$)		\$58,472	\$64,704	\$96,758			\$274,045	\$403,865	\$673,120		3 \$2,481,754
	Cost (\$/kW)		\$5,847	\$3,235	\$1,935	\$1,102	\$765	\$548	\$404	\$337	\$268	3 \$248

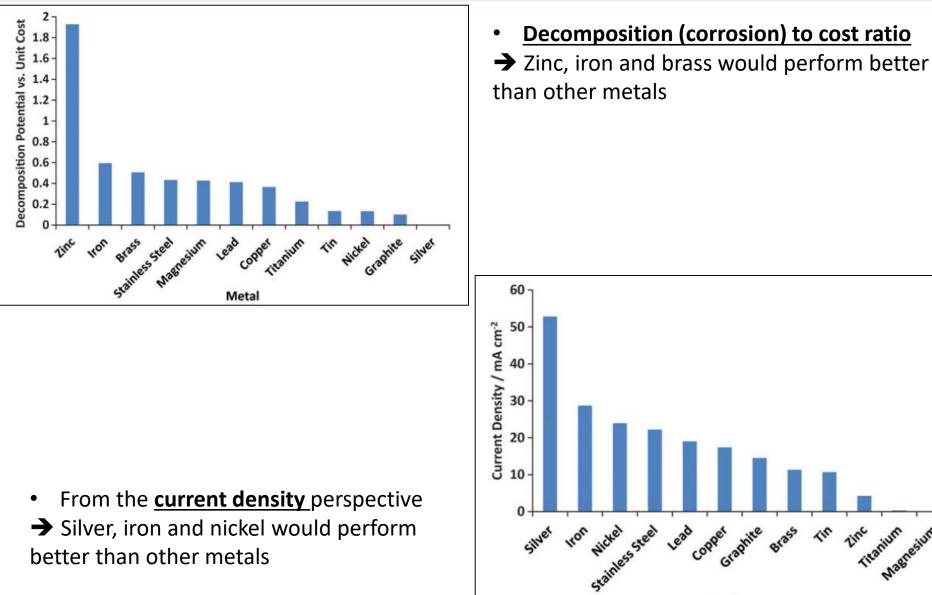
Power Supply Cost

Balance of Plant Cost (Parts Only)

CEMAC – Clean Energy Manufacturing Analysis Center

Alkaline Electrolysis

Alkaline Electrolyzer Stack


Cells are assembled electrically in series, hydraulically in parallel.

Picture of Hydrogenics Alkaline Electrolyzer

Commercial Alkaline Electrolyzers

	Manufacturer	Pure Energy Center	Hydrogenics	Hydrogenics	Hydrogenics	Units
	Model Number		HySTAT 15	HySTAT 30	HySTAT 60	
	Electrolysis type	Alkaline	Alkaline	Alkaline	Alkaline	
System Other Specs	Rated stack Consumption	22.30	145.00	270.00	515.00	kW
	Electrolyte		H₂O+ 30% KOH	H₂O+ 30% KOH	H ₂ O+ 30% KOH	
	Hydrogen purity (dep. on operating point):	ufacturerCenterHydrogenicslel NumberHySTAT 15krolysis typeAlkalined stack Consumption22.30d stack Consumption22.30trolyteH2O+ 30% KOHrogen purity (dep. on rating point):99.3-99.8em Effciency5.58Prodution Rate46 to 15Net Prodution Rate227 to 570Net Prodution Rate227 to 570Net Prodution Rate13 to 32kWh per kg ratio62.0862.0854.52down Ratio10-100%put pressureup to 12 bartive Humidity<95	99.9	99.9	%	
	System Effciency	5.58	4.90	5.20	4.90	kWh/Nm ³
	Net Prodution Rate	4	6 to 15	12 to 30	24 to 60	Nm ³ /h
			227 to 570	456 to 1140	912 to 2280	scfh
			13 to 32	26 to 65	52 to 130	kg/day
System			54.52	57.86	54.52	kWh//kg
	Turndown Ratio	10-100%				%
	Output pressure	up to 12 bar	10	10	10	bar
	Feed Water	Deionized water				
	Fresh water demand:					ltr / Nm ³ H2
	Inlet water pressure					barg
	Relative Humidity		<95	<96	<96	%
	Power Supply	400 VAC; 50 Hz			3*400 VAC 50 Hz	
	Cooling strategy	Air or liquid	Water cooled	Water cooled	Water cooled	
	Operating Temperature	5-35				°C
	Certification	CE Approved				
	Other Specs					
System Dther Specs	Dimensions	1.65	6		3.22X1.81X2.53	mXmXm
	Weight	260	3800			kg

Electrode Materials

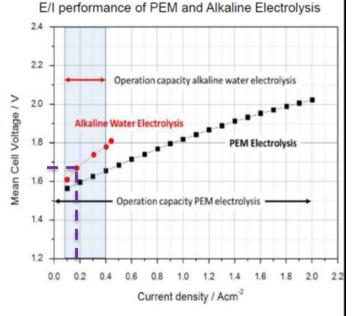
→ Silver, iron and nickel would perform better than other metals

Metal

Magnesium

Alkaline Electrolyzer Power Density

Alkaline Water Electrolysis

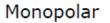


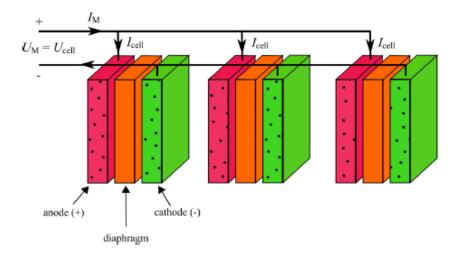
Advantages:

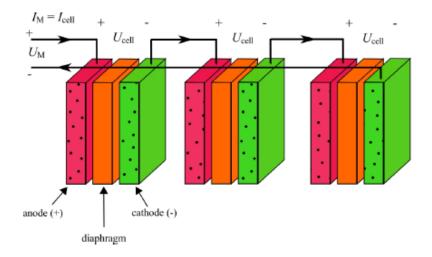
- Well developed technology
- Use of non-noble catalysts
- Long-term stability
- Units up to 750 Nm³/h (3,4 MW)

Challenges:

- Increase the current density
- Extend partial load capability
- Dynamics of the overall system
- Long term stable diaphragm




Current density	0.200	A/cm ²
Reference voltage	1.68	V
Power density	0.336	W/cm ²

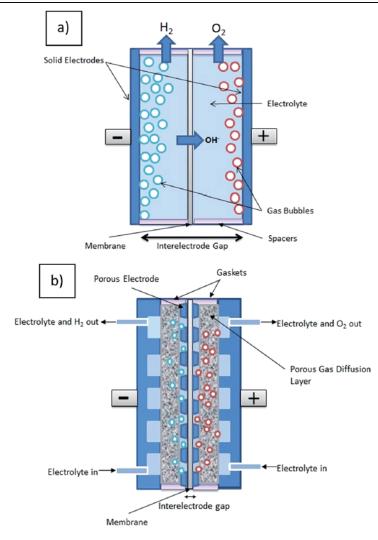
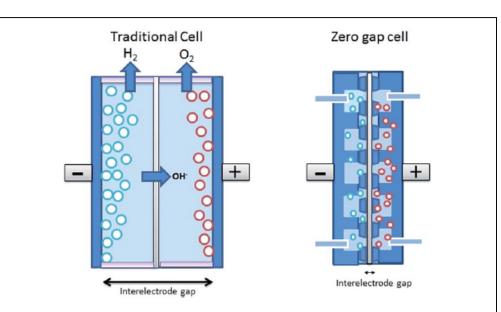

Source: Mergel, J; Carmo M, Fritz, D (2013). "Status on Technologies for Hydrogen Production by Water Electrolysis". In Stolten, D. Transition to Renewable Energy Systems. Weinheim: Wiley-VCH.

Current density		Today	2015	2020	2025	2030	
A/cm²	Alkaline	Central	0.3	0.4	0.7	0.7	0.8
	AIKdime	Range	0.2 - 0.4	0.2 - 0.7	0.3 - 1.0	0.5 - 1.0	0.6 - 1.0
	PEM	Central	1.7	1.9	2.2	2.4	2.5
		Range	1.0 - 2.0	1.2 - 2.2	1.6 - 2.5	1.6 - 2.8	1.6 - 3.0

Alkaline Electrolyzer Configuration

Bipolar

Zero Gap Cell Design

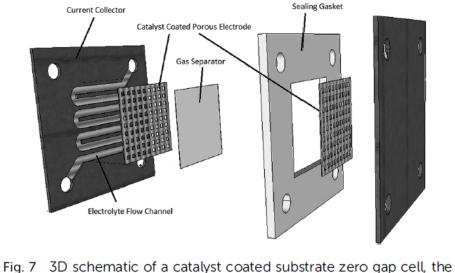

Fig. 1 (a) Standard setup, (b) zero gap setup – showing the principal differences in design, porous electrodes are pressed either side of the gas separator to reduce the inter-electrode gap, and a conducting gas diffusion layer provides an electrical connecting from the electrodes to the bipolar current collector.

Fig. 4 Schematic showing reduction of inter-electrode gap from employing a zero gap cell design. This significantly reduces the overall cell resistance, increasing performance, particularly at high current densities. Note the loss in direct surface area between the pates due to the bubbles in the conventional design.

Phillips and and Dunnill, 2016

Stack Components

two porous electrodes are individually coated substrate zero gap cell, the pressed onto either side of the gas separator. The flow channels in the current collectors permit easily supply and removal of reactants/ products.

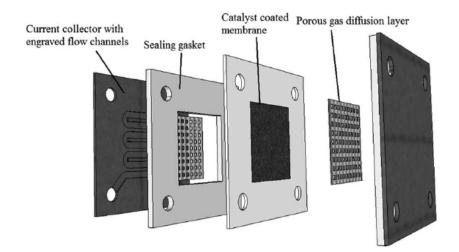


Fig. 9 Cell components for the catalyst coated membrane set-up. The catalyst is deposited directly onto the membrane, and the porous gas diffusion layers provide an electrical connection to the current collecting plate, whilst permitting the removal of produced gases.

- Catalyst coated substrate (CCS) design eliminates the need for gas diffusion layers
- Bipolar plates (current collectors) with integrated flow fields, provide:
 - 1) path for electrolyte (in and out)
 - 2) efficient removal of product gases from the cell
 - 3) heat management

Electrode Materials

TABLE 1 Comparison of HER Catalysts

Electrode	Performance	Conditions	References
Pt/C	0.6 mA cm ⁻² exchange current density	0.1 M KOH, thin film	Ref 31
Polished Ni	422 mV overpotential at 75 A cm ⁻²	0.5 M KOH, SCE, 3.14 mm ² disk electrode	Ref 60
-Cu/E	1.1 x 10 - InA cnr - exchange corrent		Ref-34
Ni ₁ Co ₉ /C	9.1×10^{-3} mA cm ⁻² exchange current	0.1 M NaOH w/o ME nanoflakes	Ref 34
Raney Ni	100 mV overpotential at 500 mA cm		Ref 47
Ni–Cr Raney	80 mV overpotential at 500 mA cm ⁻²	28 wt% KOH, 80°C	Ref 47
Ni ₆₄ W ₃₆	1.6×10 ⁻⁶ mA cm ⁻² exchange current density	0.1 M NaOH	Ref 51
MmNi _{3,3} Co _{0,75} Mn _{0,4} Al _{0,27}	88 mV overpotential at 200 mA cm ⁻²	Ni foam substrate and Ni–Mo coating, 30 wt% KOH	Ref 54
LaNi _{4,9} Si _{0,1}	$84mV$ overpotential at 200 mA cm $^{-2}$	Ni foam substrate and Ni–Mo coating, 30 wt% KOH	Ref 54
Ti ₂ Ni	60 mV overpotential at 200 mA cm ⁻²	Ni foam substrate and Ni–Mo coating, 30 wt% KOH	Refs 12 and 54
Ni ₆₀ Mo ₄₀	29 mA cm ⁻² 59 mV overpotential at 250 mA cm ⁻²	30 wt% KOH, 70°C, nanocrystalline fcc, mechanical alloyed	Ref 62
Ni-S	39.2 mA cm ⁻² 90 mV overpotential at 150 mA cm ⁻²	28 wt% NaOH, electrodeposited, thiourea	Ref 40
Fe-Mo	20.4×10 ³ mA cm ⁻²	Fe(20%)–Mo(60%), 1 M NaOH, 25°C	Ref 57
Ni–(Ebonex-Ru)	597 mA cm-2 156 mV at 100 mA cm-2	Ni–Ti ₄ O ₇ –Ru, 1 M NaOH at 25°C	Ref 63
Pd/Au	NA	Pd/Au(111)	Ref 56
Ni–Sn	NA	Alloy coating deposited on Ni mesh	Ref 64
Ni–S–Co	70 mV at 150 mA cm ⁻²	80°C, electrodeposition	Ref 41
Ni ₃ Al	1.9 mA cm-2	6 M KOH	Ref 36
Ni ₃ Al–Mo	13 mA cm-2	6 M KOH	Ref 37
Ni-S-Mn	97.5 mA cm ⁻²	30% KOH, amorphous alloy	Ref 43
Ni ₈₁ P ₁₆ C ₃	$2.11 \text{mA}\text{cm}^{-2}125.4 \text{mV}$ at 250 mA cm $^{-2}$	1 M NaOH, 25°C	Ref 39
Ni ₆₂ Fe ₃₅ C ₃	$24.5 \text{mA}\text{cm}^{-2}112.6 \text{mV}$ at $250 \text{mA}\text{cm}^{-2}$	1 M NaOH, 25°C	Ref 65
Ni–Co	29 mA cm ⁻²	0.5 M NaOH, 25°C, electrodeposited	Ref 66
Fe ₉₄ P ₄ Ce ₂	0.075 mA cm-2	1 M NaOH, 25°C	Ref 45

Raney nickel is an alloy of aluminum and nickel, which has subsequently had much of the aluminum removed through a leaching process with sodium hydroxide (NaOH). The remaining alloy has a very high surface area and also contains hydrogen gas (H_2) adsorbed on the nickel surface

Raney Nickel (Ra-Ni)

Image from:

http://www.masterorganicchemistry.com/ 2011/09/30/reagent-friday-raney-nickel/

HER: Hydrogen Evolution Reaction CEMAC – Clean Energy Manufacturing Analysis Center

Membranes

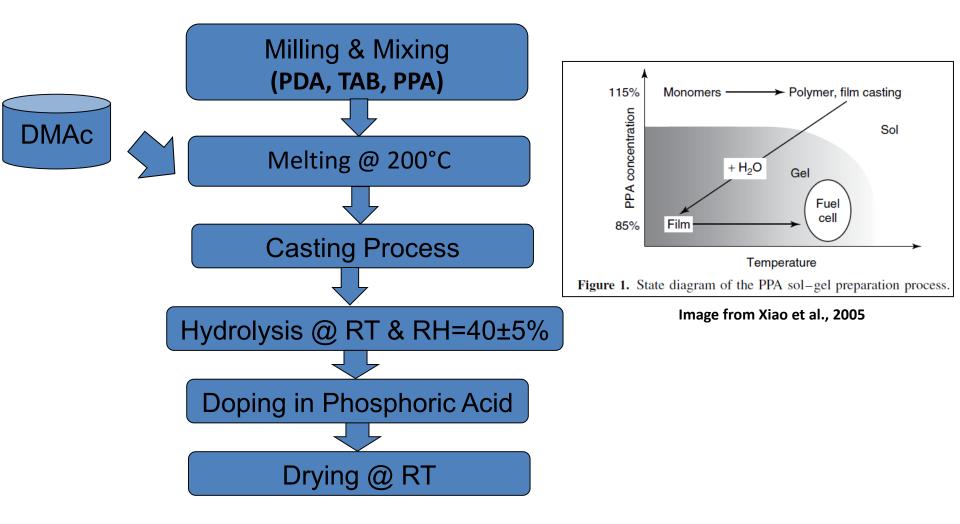
Membrane	lon Exchange Capacity	Conductivity (mS/cm)	Thickness	Cell Current Density† (mA/cm²)	Manufacturer	Ref.
Tokuyama A201	1.68 ± 0.08	40	28 μm	400 @1.8V	Tokuyama, (Japan)	Bodner et al., (2015) Ren et al., (2014)
Nafion 117	0.91	90.6	178 µm	n/a	DuPont (USA)	Ren et al., (2014)
<i>m</i> -PBI poly(2,2-(<i>m</i> - phenylene)-5,5- bibenzimidazole)	n/a	100	50-60 μm	400 @2V	Danish Power Systems (Denmark), Advent (USA)	Kraglund et al., (2016)
Zirfon™ Perl UTP 500 (polyphenylene sulphide/zirconi um oxide)		lonic resistance≤0.3 Ω.cm² at 30†	500 ± 50 μm	250 @2V	Agfa-Gevaert (Belgium)	
ХХХ						

† Assuming 30% KOH

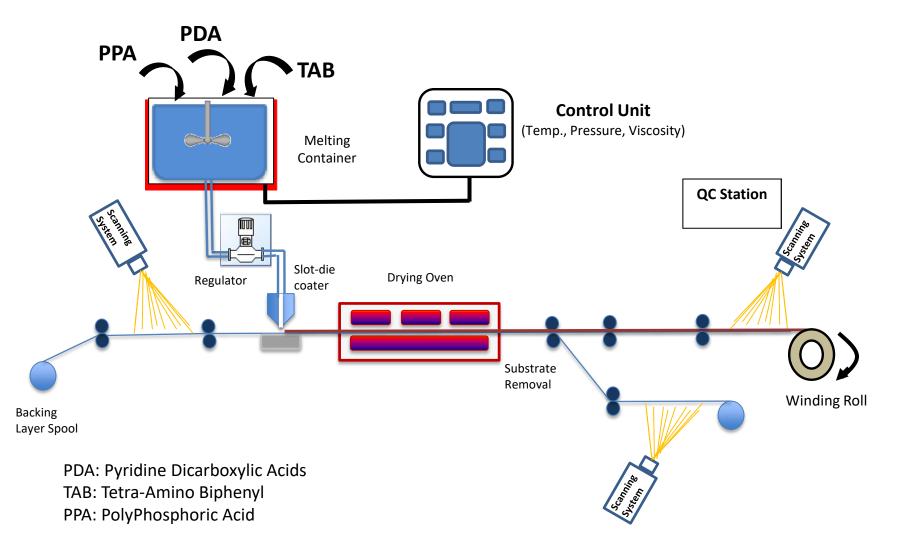
Membrane

TABLE 2 | Comparison of Different AEMs for Alkaline Electrolysis Cells

					High frequency		
Membrane	Conductivity	Current density	Cathode	Anode	resistance	Thickness	References
Zero gap diaphragm with 30 wt% KOH	54.3×10 ⁻² / (Ωcm) at 25°C ^a	470 mA cm ⁻² at 1.8 V, 50°C	Mo/Raney Ni	Co₃O₄/Raney Ni	NA	NA	Refs 19, ª84
Tokuyama A201	0.04 S cm ⁻¹ at 23°C ^b	399 mA cm ⁻² at 1.8 V, 50°C	Pt black	IrO ₂	0.23 Ω cm ² at 2.0 V, 50°C	28 µm	Refs 19, ^b 85
Selemion AMV	$2.52 \times 10^{-1} \text{ S cm}^{-1}$	90 mA/cm ⁻² at 2.0 V, 30°C	Ni/Zn/S coated Ni foam	Graphene oxide-coated NiO	NA	120 µm	Ref 61
QAPS	$>10^{-2} \text{S} \text{cm}^{-1}$	0.4 A/cm ⁻² at 1.8–1.85 V, 70°C	Ni–Mo	Ni–Fe	NA	70 µm	Ref 48
qPVB/Cl	2.7×10 ⁻² S cm at 60°C	250 mA cm ⁻² at 2.24 V, 55°C	Ni nano powder	Cu _{0.7} Co _{2.3} O ₄	0.37 Ω cm ² at 60°C	70 µm	Ref 81
QA-ETFE ^c , QPDTB ionomer	138.7 mS cm ^{-1c} (ionomer: 0.059 S cm ⁻¹ at 50°C)	100 mA cm ⁻² at 1.9 V, 22°C	Ni nanopow- der	Cu _{0.7} Co _{2.3} O ₄	0.85 Ω cm ² at 22°C full MEA resistance	88.4 μm ^c	Refs 83, ^c 82
LDPE-g-VBC	17 mS cm ⁻¹ at 60°C	300 mA cm ⁻² at 2.1 V, 45°C ^{**}	NA	NA	0.3–0.43 Ω cm ² at 45°C	NA	Ref 80

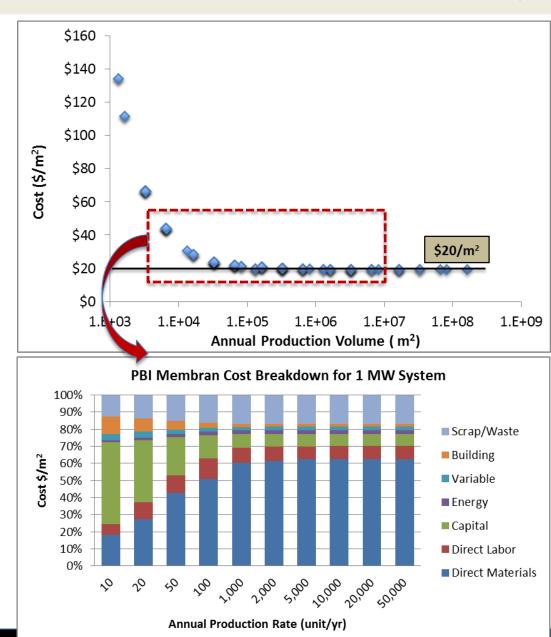

** Data was taken from a diagram, since the values were not stated within the text.

PBI-based Membrane - Preliminary

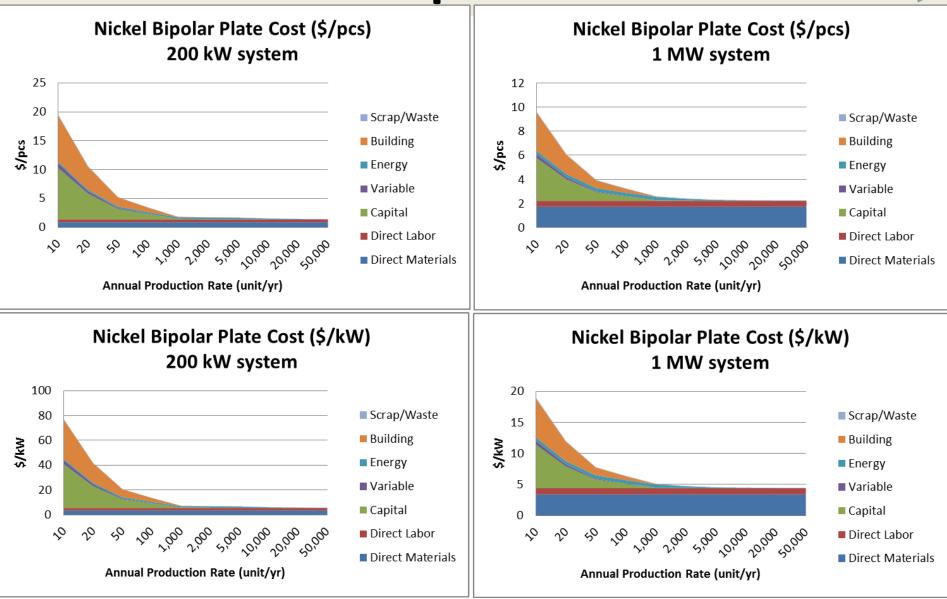

BOM-1st Generation Monomers

Materials	Suppliers	Price
Pyridine dicarboxylic acids (2,4-, 2,5-, 2,6- and 3,5- PDA)	Sigma-Aldrich Chemical Co. Matrix Scientific Alpha Aeser Chemical Co.	\$126 for100mg \$91 for 25 g \$212 for 500 g
3,3',4,4'-Tetraaminobiphenyl (TAB)	Sigma-Aldrich Chemical Co. TCI America Tetra-Hedron	\$250 for 25 g \$126 for 25 g \$380 for 100 g
Polyphosphoric acid (115%) (PPA)	Sigma-Aldrich Chemical Co.	\$60 for1 kg
Ammonia Hydroxide	Sigma-Aldrich Chemical Co.	\$340 for 6X2.5L
Distilled water	Sigma-Aldrich Chemical Co.	
Phosphoric Acid (Conc. 85% for doping)	Duda Energy	\$40 per gallon
Dimethylacetamide (DMAc)	Sigma-Aldrich Chemical Co. Alpha Aeser Chemical Co.	\$542 for 6L \$82.5 for 2.5L

Manufacturing of PBI-based Membrane



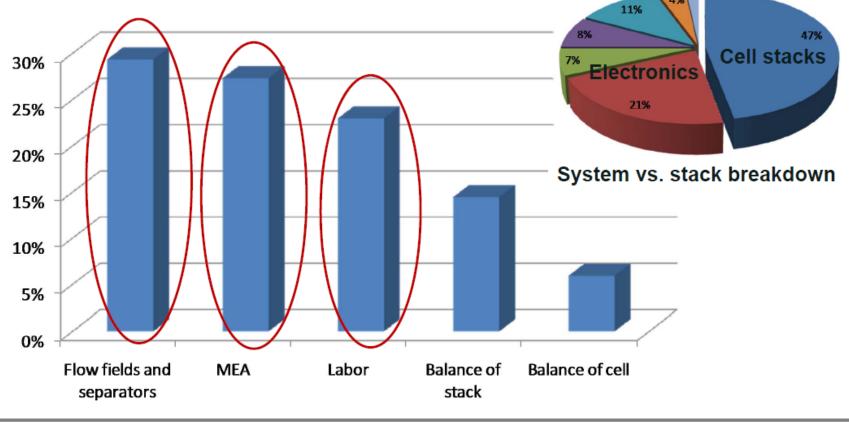
Casting Process



BPI Membrane Cost Analysis- Preliminary

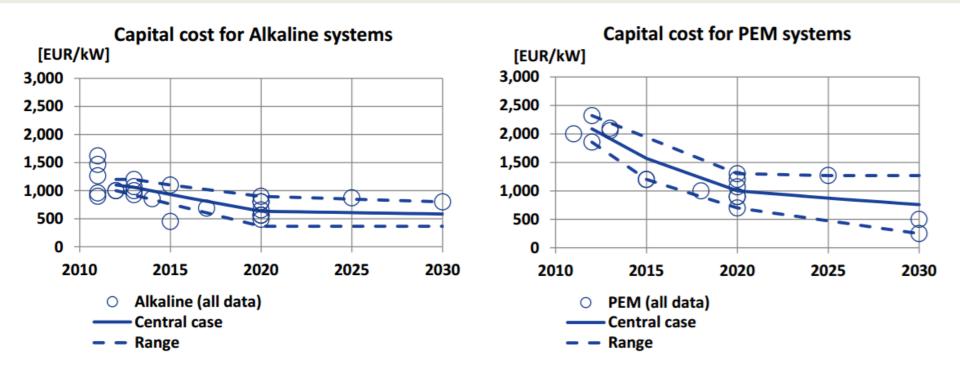
- Bill-of materials based on 1st generation materials (Xiao et al., 2003).
- Cost includes capital, building, operational, labor, material and scrap cost components.

Nickel Bipolar Plates


48 kg/day

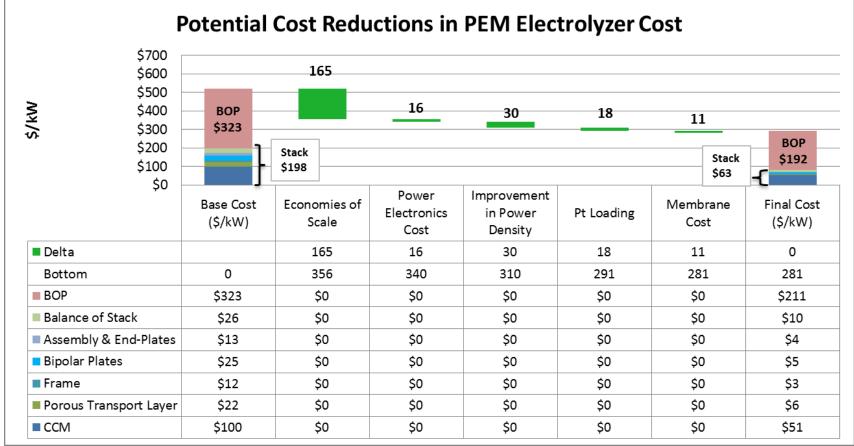
CEMAC - Clean Energy Manufacturing Analysis Center

240 kg/day


Historical Cost Breakdown

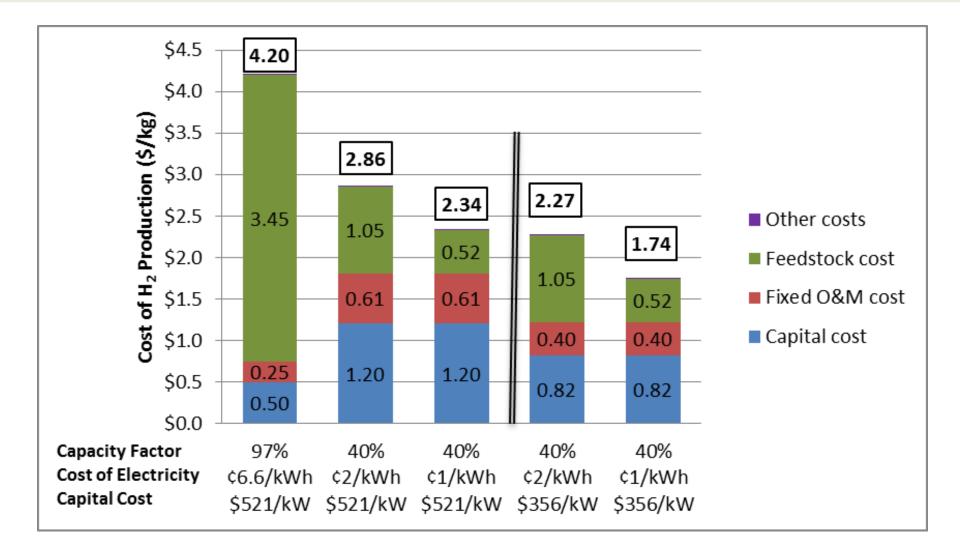
- Flow field, membrane electrode assembly, and labor are high impact cost areas
- Catalyst represents ~6% of total cost

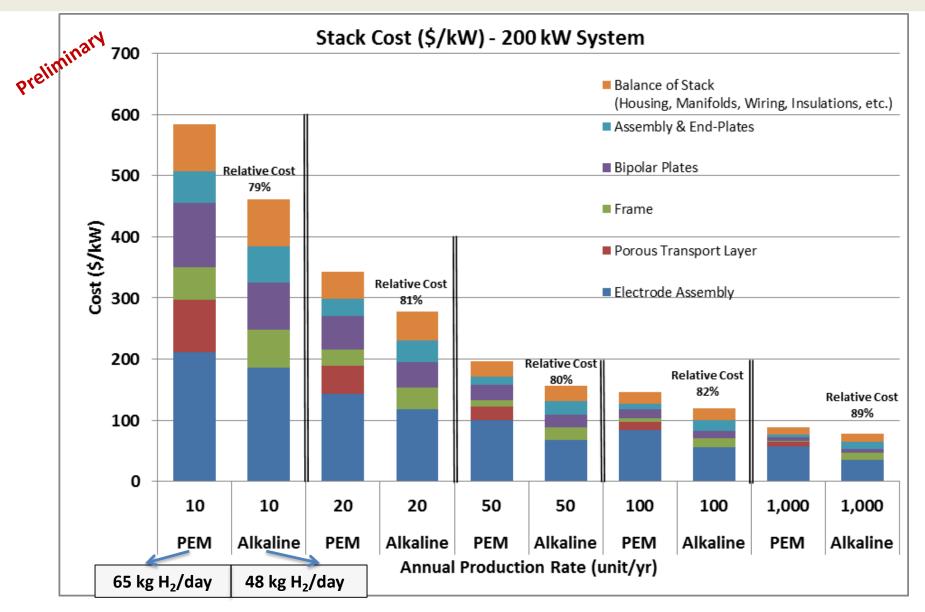
Page 2


PEM and Alkaline Electrolyzer Capital Cost

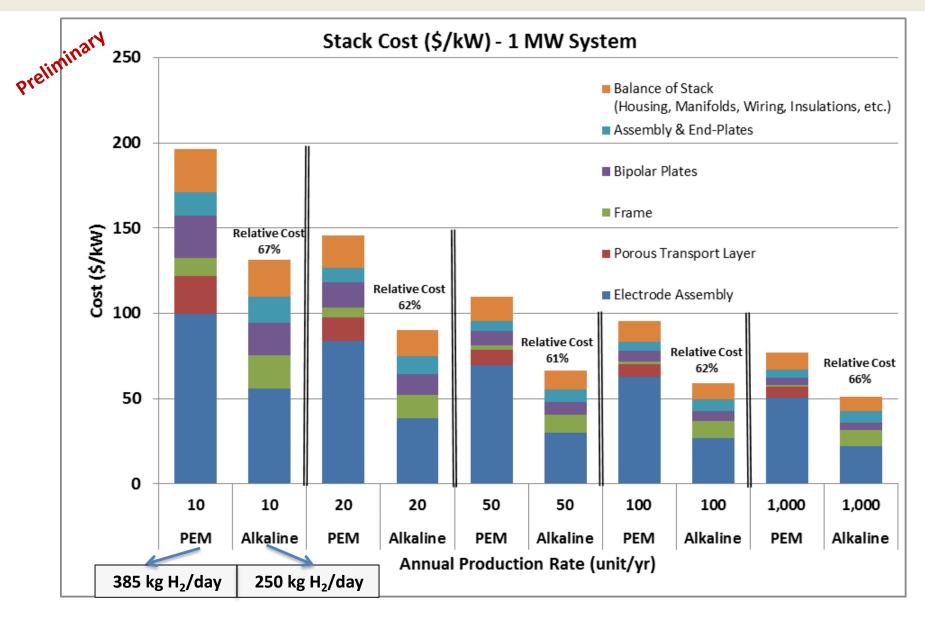
System cost ⁽¹⁾			Today	2015	2020	2025	2030
EUR/kW	Alkaline	Central	1,100	930	630	610	580
	Alkaline	Range	1,000 - 1,200	760 - 1,100	370 - 900	370 - 850	370 - 800
	PEM	Central	2,090	1,570	1,000	870	760
		Range	1,860 - 2,320	1,200 - 1,940	700 - 1,300	480 - 1,270	250 - 1,270

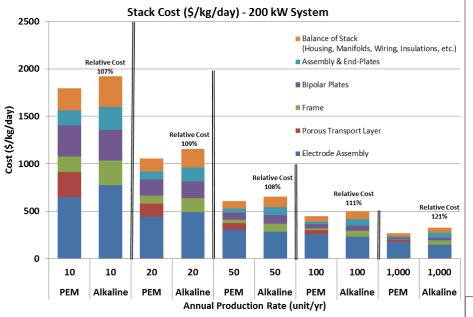
⁽¹⁾ incl. power supply, system control, gas drying (purity above 99.4%). Excl. grid connection, external compression, external purification and hydrogen storage

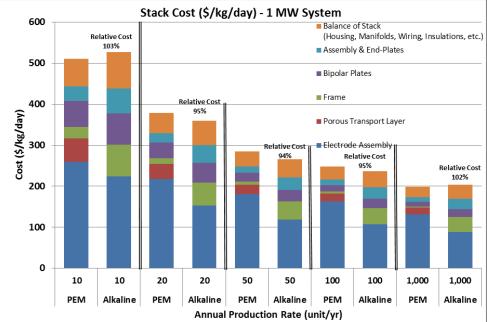

Waterfall Chart – Capital Cost


• Assumptions:

- Economies of scale: cost of producing 100 unit/yr vs. 10 units/yr
- Power electronics : 10% cost reduction
- Improvement in power density: +20% (from 2.91 W/cm² to 3.50 W/cm²)
- Pt loading: reducing PGM loading from 11 g/m² to 5 g/m²
- Membrane cost: 20% cost reduction


Effect of Electrolyzer Capital Cost on H₂ Cost


Comparative Cost Analysis (Stack Only)


Comparative Cost Analysis (Stack Only)

Alkaline vs. PEM Electrolyzer

 Alkaline electrolyzer stacks have larger cost in \$/kg-H₂ basis and in \$/kW basis

