Greenhouse Effect, Carbon Footprints and Sequestration

John C. Bean

Outline

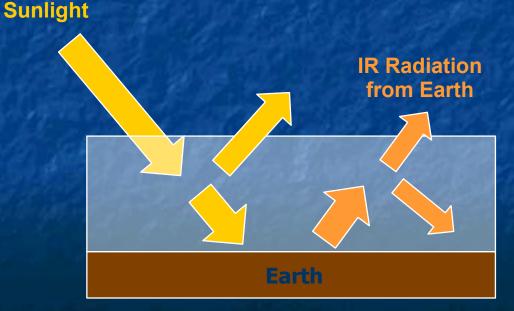
Building a simple "do-it-yourself" model of the Greenhouse Effect based on: 1 color of sunlight + 1 color of earthlight + 1 greenhouse gas Which ultimately collapses because: It's all about different colors Colors where gas A absorbs & emits vs. colors where gas B absorbs & emits Critical colors = Those where earth might radiate away heat (particular infrared colors) But is now being thwarted by the addition of new atmospheric gases Data on gases now accumulating in the atmosphere Including now-censored "EPA Inventory of U.S. Greenhouse Gas Emissions & Sinks" Discussion of atmospheric gas sources, especially energy industry sources Possibilities of reducing such emissions Or of at least "sequestering" those emissions

(Written / Revised: February 2021)

Greenhouse Effect, Carbon Footprints and Sequestration This lecture continues our discussion of climate change Last time I discussed how acquire long-term climate data And provided an overview of how climate models have evolved Today I'll dig deeper into the Greenhouse Gas Effect Which sounds simple - and indeed the basics are But with a realistic variety of gases, it becomes extremely complicated! As suggested by conflicting "expert" statements, such as: "CH₄ is 5X worse than CO₂" versus "CH₄ is 30X worse than CO₂" And as will be seen in the "simplified" greenhouse model I'll try to develop I'll then close by discussing Carbon Footprints and Carbon Sequestration

An Introduction to Sustainable Energy Systems: WeCanFigureThisOut.org/ENERGY/Energy_home.htm

Common explanations of the greenhouse effect can be **very** incomplete


To demonstrate this, let's try to develop our own model

That model should include:

- Incoming sunlight partly absorbed/scattered by atmosphere, partly passing to earth

- Outgoing heat (IR radiation) emitted by the warm earth,

partly absorbed/scattered by atmosphere, partly passing to out to space

To clarify our model, simplify our model:

Do this by temporarily assuming that:

- Sunlight is all one color = color_{sunlight}
- IR radiation emitted by earth is all one color = color_{earthlight}
- There is only one really important greenhouse gas = gas

We then need to know:

- Gas's light absorbance (per molecule or mass) at color_{sunlight} = Absorb_{sunlight}
- Gas's light absorbance (per molecule or mass) at color_{earthlight} = Absorb_{earthlight}
- Plus the concentration of that gas in the atmosphere

Which ought to be proportional to:

(Rate of gas introduction) x (Average gas lifetime in atmosphere)

That is: **Concentration**_{gas} = C1 x Rate_{added} x Lifetime

We would also need to know:

- Intensity of arriving sunlight (power / area) = P_{sunlight}

- Intensity of earth's IR thermal emission (power / area) = Pearthlight

The other stuff might be fixed, but this quantity will not be! Because it will intensify if earth's surface heats up (and reverse)

So **output** of our model will be resulting value of P_{earthlight} as a function of time

=> Temperature of earth's surface as a function of time

So let's now see how far we can get with this simplified model:

To come up with quantitative results we'd also have to figure out a lot of constants Taking into account things like geometries

But we just want trends now, so I'll just stick in constants as C's

Sun power flow **downward** through the atmosphere:

Power arriving at **TOP** of atmosphere = $P_{sunlight}$

In the atmosphere some **fraction** of this power will be absorbed or scattered:

- = C2 x Concentration_{gas} x Absorb_{sunlight}
- = C2 (C1 x Rate_{added} x Lifetime) (Absorb_{sunlight})

= C3 x Rate_{added} x Lifetime x Absorb_{sunlight}

So sunlight power passing downward **through** the atmosphere directly would be = $P_{sunlight} (1 - C3 \times Rate_{added} \times Lifetime \times Absorb_{sunlight})$

However, sunlight power absorbed by greenhouse gas eventually has to exit It should radiate out randomly in all directions, thus Half re-radiates upward out into space, half re-radiates downward to earth Sun power to earth = $P_{sunlight} (1 - \frac{1}{2} C3 \times Rate_{added} \times Lifetime \times Absorb_{sunlight})$

Earth IR power radiated upward into outer space:

By just turning all of the arguments above on their heads, and we should have: Earth power to space = $P_{earth} (1 - \frac{1}{2} C4 \times Rate_{added} \times Lifetime \times Absorb_{earthlight})$

Which, eventually, should balance last page's sun energy coming down to earth: Sun power to earth = $P_{sunlight} (1 - \frac{1}{2} C3 \times Rate_{added} \times Lifetime \times Absorb_{sunlight})$

So equate, solve for P_{earth}, figure out what temperature would produce that power

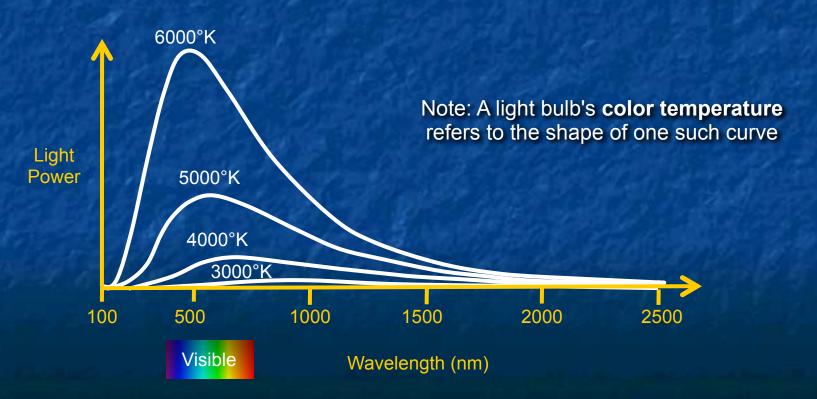
What's so hard about this? To expand our model we only seem to need:

- Conversion of earth's surface temperature to power emitted
- Absorbance data for real greenhouse gases
- Concentration of real greenhouse gases

OR their rate of addition to **and** lifetime in the atmosphere

An Introduction to Sustainable Energy Systems: WeCanFigureThisOut.org/ENERGY/Energy_home.htm

Conversion of surface temperature to power emitted: Radiation from any heated object can be approximated by a "blackbody" Which assumes that objects have all sorts of oscillators (e.g., oscillating electrons) Some oscillate slowly, some oscillate more quickly Oscillation of electrons => emission of electromagnetic radiation ("light") Slow oscillators => Low frequency (long wavelength) light Fast oscillators => High frequency (short wavelength) light But these same oscillators can also **absorb** light, **including each other's light** So heat energy is **shared around** between these oscillators Sharing => Final balance of light from slow vs. faster oscillators Analysis of sharing + dose of quantum mechanics => "Blackbody Curve" An Introduction to Sustainable Energy Systems: WeCanFigureThisOut.org/ENERGY/Energy home.htm


Blackbody Curves:

Planck's Blackbody Law:

Light Intensity (W/m²- μ m)= A / λ^5 [e^{B / λ T-1)}

Where λ = Wavelength,T is temperature of the object (in °K)A = 3.742 x 108 W-µm4/m2B = 1.44 x 104 µm-K

Which generates curves like this for objects of different temperatures:

Characteristics of which:

Roughly match our personal experiences:

As object gets hotter, it emits MORE total heat energy As object gets hotter, its color changes from red => orange => yellow . . From blackbody curves, those observations can be quantified in the: Stefan-Boltzman Law = Total blackbody energy = Total heat emitted = σT^4 $\sigma = 5.670 \times 10^{-8} \text{ W/m}^2/(^\circ\text{K})^4$

Wien Displacement Law = Peak blackbody wavelength = 2896 µm / T (in °K) Light $\int_{100}^{600^{\circ}K} \int_{500^{\circ}K} \int_{1000}^{500^{\circ}K} \int_{1000}^{50^{\circ}K} \int_{1000}^{50^{\circ}K} \int_{1000}^{50^{\circ}K} \int_{1000}^{50^{\circ}K} \int_{1000}^{50^{\circ}K} \int_{100}^{50^{\circ}K} \int_{1000}^{50^{\circ}K} \int_{100}^{50^{\circ}K} \int_{100}^{50^{\circ}$

Implications for our model:

- We approximated sunlight's true spectrum as a single color - We also approximated earth's (mostly IR heat) spectrum as a single color We could still use the new laws by lumping each spectrum into one color. That is: Sunlight spectrum ~ 6000°K Black body curve, so using Stefan-Boltzman and Wein: $P_{\text{sunlight}} = \sigma (6000^{\circ} \text{K})^4 \sim 70 \text{ million W/m}^2 \text{ (at sun's surface)}$ $Color_{sunlight} \sim Peak_wavelength_{sun} = 2896 \ \mu m \ / \ 6000 \ \sim \ 0.5 \ \mu m$ Earth spectrum, keeping earth's surface temperature as variable to be solved for: $P_{earth} = \sigma (Temperature_{earth})^4$

 $Color_{earth} \sim Peak_wavelength_{earth} = 2896 \ \mu m$ / Temperature_{earth}

To see how we could solve for T_{earth} , **really** simplify:

For instance, by eliminating the atmosphere

And assuming flat sun right next to flat earth:

But cooler "Earth" receives more heat than it emits!

So, it would heat up until incoming and outgoing heat flows balanced

Stefan-Boltzman Law, in this geometry, would require equal temperatures:

=> Extreme case of global planar warming

An Introduction to Sustainable Energy Systems: WeCanFigureThisOut.org/ENERGY/Energy_home.htm

Or we could use a more realistic geometry:

With its light spreading out, sun delivers far less power/area to earth's atmosphere Earth then re-emits that energy in all directions (not just side receiving sunlight) So balance of heat flow to and from earth' surface is achieved with earth surface temperature far less than sun's 5778 °K surface temperature And we all know balance comes with earth surface temperature of about 300 °K But that "about" is all important to those of us living on the earth!

An Introduction to Sustainable Energy Systems: WeCanFigureThisOut.org/ENERGY/Energy_home.htm

But that's getting ahead of ourselves, we still need more input data: One of the things still needed is the concentrations of real greenhouse gases A naturally occurring but extremely important greenhouse gas is water vapor For which I could use measured concentrations + temperature trends Hoping it does not complicate things by converting to IR reflecting clouds!

Other current atmospheric greenhouse gas concentrations:

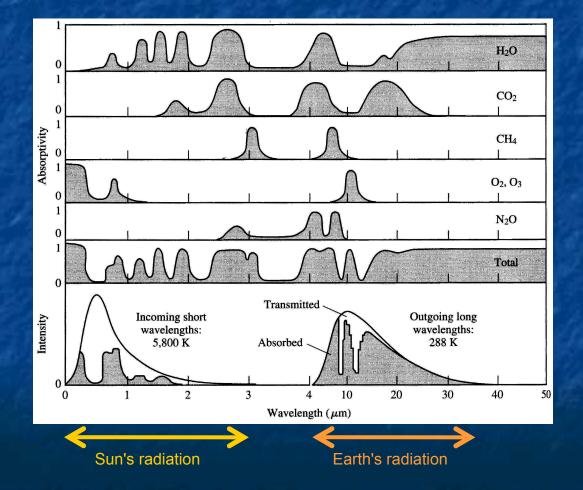
Gas:	CO ₂	CH ₄	N ₂ O	CFC-11	HCFC-22	CF ₄
Parts/million by volume (1994) ¹ :	358	1.72	0.312	0.00027	0.0001	0.00007
Parts/million by volume (2014) ² :	395	1.89	0.326	0.00024	0.0002	

But these are only recent concentrations, and we want to model possible changes

¹Source: Introduction to Engineering and the Environment - Rubin (p. 471)

²Source: http://cdiac.ornl.gov/pns/current_ghg.html

To model possibly changing greenhouse gas concentrations: We'd do better by using relationships like: Concentration α Rate_{added} x Lifetime So we'd first work up estimates on current and future rates of gas introduction This is where we'd put in the effect of our industrial civilization Then we'd need each gas's typical (average) lifetime in the atmosphere For which I found data from various sources (ACS / Rubin textbook / ORNL): Average greenhouse gas lifetimes in atmosphere (in years):


Gas:	CO ₂	CH ₄	N ₂ O	CFC-11	CFC-12	HCFC-22	HFC-23	SF ₆	CF ₄
Life ¹ :	50	12	114		100		270	3200	
Life ² :	50-200	12	120	50		12			50000
Life ³ :	100-300	12	121	45	100	11.9		3200	

¹Source: www.acs.org/content/acs/en/climatescience/greenhousegases/properties.html ²Source: Introduction to Engineering and the Environment - Rubin (p. 471) ³Source: http://cdiac.ornl.gov/pns/current_ghg.html

Bringing me to data on real greenhouse gas absorbances

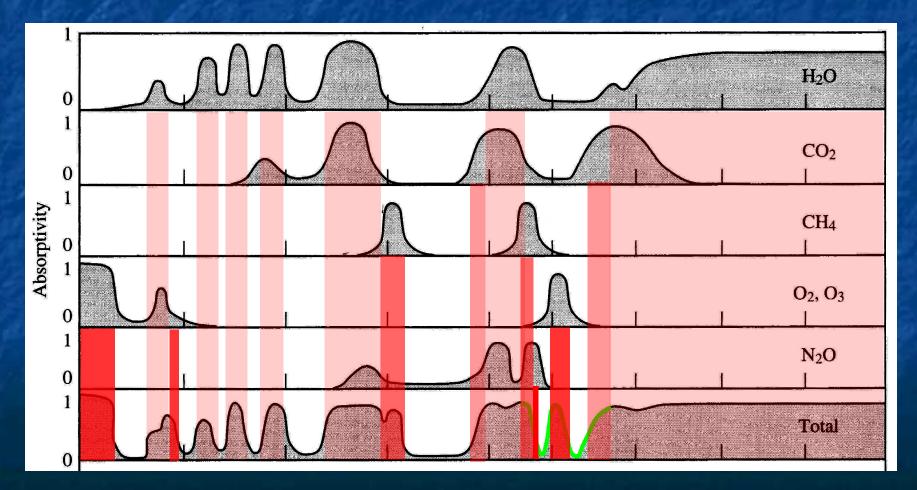
Where our simplified model runs into a non-simple wall:

Greenhouse gases absorb at all sorts of wavelengths, with huge overlaps!

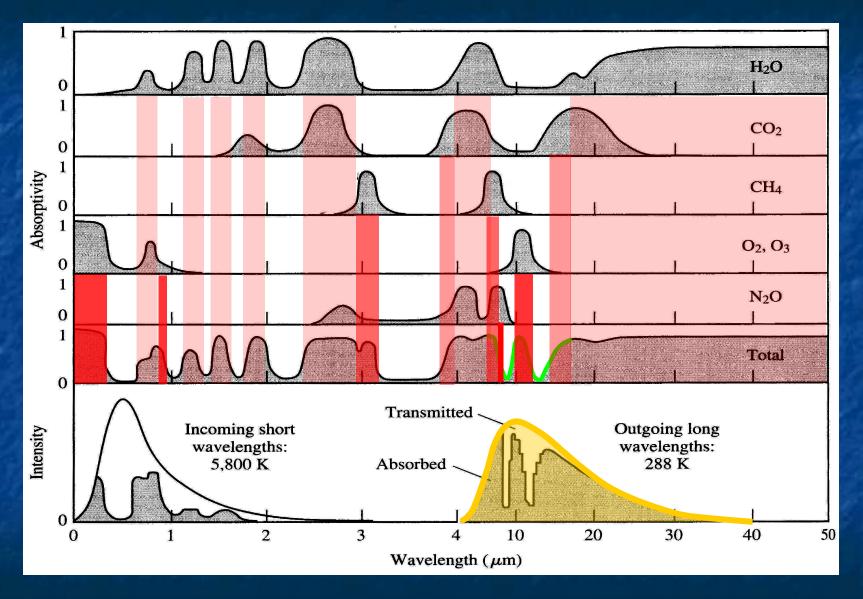
Source: Introduction to Engineering and the Environment - Rubin (p. 482)

Taken from: Introduction to Environmental Engineering & Science - Masters

Implying:

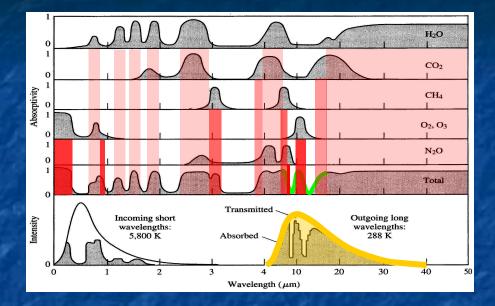

Our model's single wavelength approximations are going to be **very** inaccurate We can't just approximate sun and earth light by single wavelengths Because gas absorption is all across their blackbody spectra Effect of each greenhouse gas is also no longer independent of other gases For one, through their absorbance overlaps, gases can exchange energy But even more important is **HOW the gas absorbance bands overlap**: Where more concentrated gas already blocks sunlight, new gas has small effect But if new/dilute gas blocks open wavelengths, it can have a HUGE EFFECT Because it closes a previously open greenhouse window!

CUMULATIVE blocking effect:


Order of chart is most concentrated gases (top) => most dilute gases (bottom)

PageDn to add red bands showing blocking due to successively more dilute gases

Green = Window for Earthlight heat loss left open by water vapor



Cumulative effect of added gases on earth's heat loss window:

Heat loss window is now mostly shut by CO₂, CH₄, O₂, O₃ and N₂O

This explains the difficulty in predicting the impact of a given gas

For instance: Why I have heard methane is "5X worse" or "30X worse than CO₂" Because it is NOT about methane's entire absorption spectrum It's about where methane absorbs IR colors that no other gas has already absorbed And that depends on the **absorption spectra** of ALL the other gases And on the **concentrations** of ALL those other gases Making this an extremely complex and tightly interwoven calculation! Another way of looking at this is "Global Warming Potential"

For which American Chemical Society has a nice webpage, which I'll just quote:

"GWP is a measure of how much energy a greenhouse gas would add to atmospheric warming in a given time compared to CO_2 .

A molecule's GWP depends on three factors:

1) The wavelengths where the molecule absorbs.

The absorption needs to be in the thermal IR range where the Earth emits and will be more effective if it absorbs where water vapor and CO_2 do not.

2) The strength of the relevant absorptions.

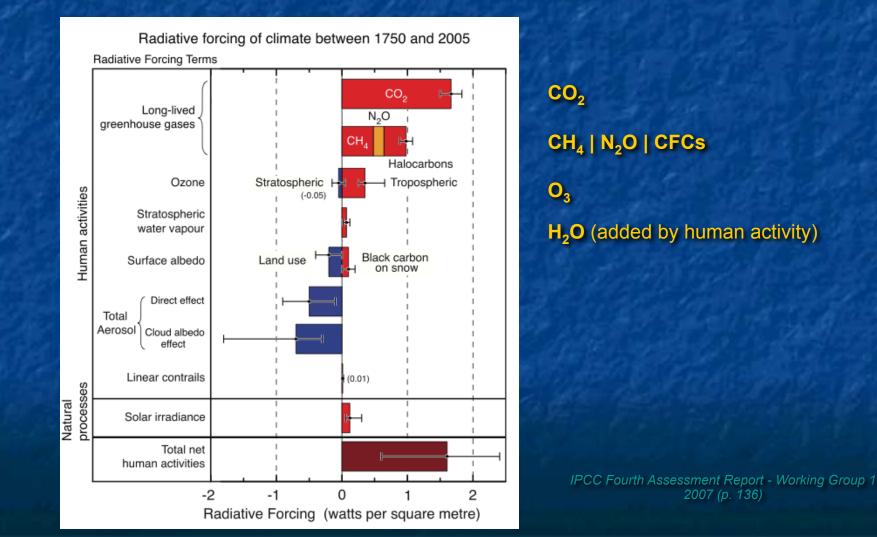
The more energy the molecule absorbs, the more effective it will be in warming.

3) The atmospheric lifetime of the molecule.

The longer the gas persists, the more warming it can produce."

http://www.acs.org/content/acs/en/climatescience/greenhousegases/properties.html

Yielding assessments of *relative* greenhouse impact


CUMULATIVE impact on global warming:

Gas	Lifetime (yrs)	20 yrs out	100 yrs out	500 yrs out
CO ₂ (= STANDARD)	(50-300)	1	1	1
CH ₄	12	72	25	7.6
N ₂ O	114	289	298	153
CFC-12 (CCl ₂ F ₂)	100	11000	10900	5200
HFC-23 (CHF ₃)	270	12000	14800	12200
HFC-134a (CH ₂ FCF ₃)	14	3830	1430	435
Sulfur Hexafluoride	3200	16300	22800	32600

Remember that lifetimes are not absolute (gas doesn't then suddenly disappear) It's more like radioactive half lives, where ~ 50% will be gone in this time

http://www.acs.org/content/acs/en/climatescience/greenhousegases/properties.html

FULL effect of each gas is tabulated in IPCC's "radiative forcings" Which go beyond GWP's by adding in relative concentrations of gases Here showing only **manmade** forcings (i.e. above and beyond natural occurrences)

So we now understand need for hugely complex computer models: Which must deal with full spectra of solar and earth light/power emission AND deal with full spectrum of a given greenhouse gas's absorption Including possible absorption at one wavelength / re-emission at another And deal with overlaps in absorption/emission spectra between multiple gases Including possible blockages by more concentrated gases And deal with complexities such as: Water as vapor absorbs IR radiation => strong greenhouse gas => heating But if subtle factors convert it to clouds => Reflects sunlight => cooling Explaining uncertainties about a specific greenhouse gas's impact Which is due to only small segments of its absorption bands that peek out from behind the absorption bands of other gases

To alter projected trends

We will have to reduce greenhouse effects

Which will require reduction in following carbon footprints:

An Introduction to Sustainable Energy Systems: WeCanFigureThisOut.org/ENERGY/Energy_home.htm

Worldwide annual greenhouse gas emissions in 1990's (in M-ton):

Source		World	US
CO ₂ :	Commercial Energy Cement manufacturing and gas flaring Tropical deforestation Total	22,900 1,000 5,900 29,800	5,250 (US = ¼ world!) 50 - 5,300
CH4:	Fossil fuel production Enteric fermentation Rice paddies Landfills Animal waste Sewage Total	100 85 60 40 25 25 375	11
N ₂ O:	Cultivated soils Industrial Biomass burning Cattle and feed lots Total	3.5 1.3 0.5 0.4 5.7	0.5
Other:	CPC-11, -12, -13 HCFC-22 HFCs, PFCs, SF6	0.7 0.2	0.1 0.1 0.34

Source: Intro to Energy and the Environment – Edward S. Rubin (p. 40), citing IPCC and others

EPA Inventory of US Greenhouse Gas Emissions and Sinks (1990-2012)

(in million metric tons CO₂ equivalent)

Source		1990	2012
CO ₂ :	Fossil Fuel Combustion	4745	5072
	Electricity Generation	1820	2023
	Transportation	1494	1740
	Industrial	845	774
	Residential	338	288
	Commercial	219	197
	Non-energy use of Fuels	121	110
	Steel Production / Mining	100	54
	Natural Gas Systems	38	35
	Cement Production	33	35
	Lime Production	11	13
	Ammonia Production	13	9

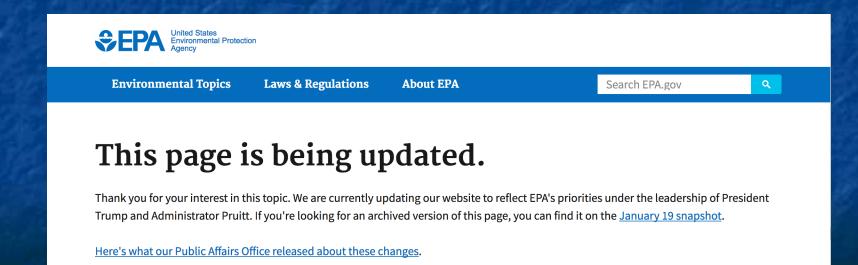
From table ES-2 of: http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2014-Main-Text.pdf See note that follows

(continuing on to methane and nitrous oxide data)

Source		1990	2012
CH ₄ :	Enteric fermentations (a.k.a. flatulence)	138	141
	Natural Gas Systems	156	130
	Landfills	148	102
	Coal Mining	81	56
	Manure Management	32	53
	Petroleum Systems	36	32
N ₂ O:	Agriculture soil management	282	306
	Stationary Combustion	12	22
	Manure Management	14	18
	Mobile Construction	44	17
	Nitric Acid Production	18	15

From table ES-2 of: http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2014-Main-Text.pdf See note that follows

A note/digression about disappearing EPA Data


In researching this lecture note set, on 3 October 2014 I first accessed the preceding:

"EPA Inventory of U.S. Greenhouse Gas Emission & Sinks: 1990-2014"

At: <u>http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2014-Main-Text.pdf</u>

Re-accessing that link on 28 April 2017, the EPA server gave me a "file not found" error

The next day the same link returned this message:

Accessing that EPA Public Affairs Office link:

News Releases

Share Contact Us

News Releases from Headquarters > Office of the Administrator (AO)

EPA Kicks Off Website Updates

04/28/2017

Contact Information: (press@epa.gov)

WASHINGTON – EPA.gov, the website for the United States Environmental Protection Agency, is undergoing changes that reflect the agency's new direction under President Donald Trump and Administrator Scott Pruitt. The process, which involves updating language to reflect the approach of new leadership, is intended to ensure that the public can use the website to understand the agency's current efforts. The changes will comply with agency ethics and legal guidance, including the use of proper archiving procedures. For instance, a screenshot of the last administration's website will remain available from the main page.

"As EPA renews its commitment to human health and clean air, land, and water, our website needs to reflect the views of the leadership of the agency," said J.P. Freire, Associate Administrator for Public Affairs. "We want to eliminate confusion by removing outdated language first and making room to discuss how we're protecting the environment and human health by partnering with states and working within the law."

The first page to be updated is a <u>page reflecting President Trump's Executive Order on Energy Independence</u>, which calls for a review of the so-called Clean Power Plan. Language associated with the Clean Power Plan, written by the last administration, is out of date. Similarly, content related to climate and regulation is also being reviewed.

Should you now encounter similar difficulty in accessing the original report,

note that I have posted my 2014 download on this lecture's "Resources" webpage: LINK

At the top of both preceding lists: Carbon footprint of **power plants** So let's look more closely at power plants (including info from previous lectures): Fuels that can boil water to drive power plant steam turbine generators:

Energy Source	Carbon %	Heating Value	Carbon Intensity
Biomass	45%	10-15 kJ/g	30-45 g C / MJ
Coal	59%	24.2 kJ/g	24.4 g C / MJ
Crude Oil	85%	44.3 kJ/g	19.2 g C / MJ
Natural Gas	74%	54.4 kJ/g	13.7 g C / MJ

Lowest carbon output per heat energy output (by far) is for natural gas Suggesting use of natural gas should drastically reduce power's carbon footprint By factor of two compared to coal-fired energy!

> Sources: Intro to Energy and the Environment – Edward S. Rubin (p. 214 / p. 519) and: http://www.omafra.gov.on.ca/english/engineer/facts/11-033.htm

But US power plant emissions (gm/kW-h of electricity produced) =

Туре	CO ₂	SO ₂	NO _x	Particulates
Coal fired plants	989	6.38	3.69	0.35
Oil fired plants	1,020	8.96	2.01	0.15
Natural gas fired plants	803	0.00	2.87	0.005

Hold it!

Preceding table: Natural gas's "carbon intensity" (a.k.a. footprint) ~ 50% of coal This table: Natural gas's CO₂ output per unit of power produced = 81% of coal Which is it? What's the difference? Answer comes from Fossil Fuels (pptx / pdf / key) note set:

Source: Intro to Energy and the Environment – Edward S. Rubin (p. 168)

Depends on **how much of that heat** is converted into electrical energy: Normal **COAL** power plant just boils water => drives turbine => drives generator Sending a lot of the heat energy up the smoke stack Normal **Gas** power plant burns that gas in simple gas turbine generator (OCGT) Sending **some** of the **heat energy** out its exhaust / up the smoke stack But more recently, in the U.S. we are beginning to use our cheap gas in more expensive & efficient combined cycle gas turbine (CCGT) plants Boosting cost of NG power, but driving carbon footprint to ~ 50% of coal However, in Europe, natural gas from Russia is 3-5 times more expensive So Europeans are now **shutting down** more expensive CCGT plants Reverting to less efficient simple gas turbines (used for **only** peak power) With less efficient OCGT's, in Europe NG carbon footprint => ~ 81% of coal

Next biggest carbon production footprint = Cement production Net CO_2 release is ~ 4-8% of man's carbon footprint Which is certainly a problem to be addressed! But are the quantities of cement used in power plants an energy system problem? It sounds plausible: Reactors & Dams ARE among our very largest concrete structures! Leading many bloggers/activists to ask: **Could the carbon footprint of the concrete used in Reactors & Dams** negate their claim of having almost no carbon footprint? To answer that question let me now revisit (and merge) material from my Hydroelectric, Nuclear, and Fossil Fuel note sets:

What is concrete?

Concrete consists of gravel ("aggregate") glued together with a cement **Portland cement** is the most commonly used modern glue It contains calcium silicates (e.g., Ca₃SiO₅ and Ca₂SiO₄) which, when exposed to water, form hydrates that bind the gravel together ¹ The source of that Ca is naturally occurring limestone (CaCO₃) Ca is liberated by heating the limestone at 1400-1600°C in **HUGE** rotating kilns: ²

1) Portland cement science: http://matse1.matse.illinois.edu/ concrete/prin.html

2) Photo: https://www.cemnet.com/ Articles/story/39950/acc-s-mega-kilnline-project.html

Concrete's Carbon Footprint:

The above process has a huge carbon footprint due to:

- Burning of carbon fossil fuels to produce the 1400-1600°C kiln temperatures
- The need to **constantly** heat those massive kilns, even when not in production
- The release of CO₂ that occurs as Ca is liberated from the limestone (CaCO₃)

The now censored EPA Inventory of US Greenhouse Gas Emissions & Sinks reported 1 that 2012 U.S. Portland cement production produced a carbon footprint of: 35 million metric tonnes CO₂ equivalent = 38.5 million tons CO₂ equivalent
Annual U.S. Portland cement production is ~ 86 million tons ² and thus:
1 ton of Portland cement => 0.45 tons of CO₂ equivalent released
Concrete (aggregate + Portland cement) is ~ 11% Portland cement by weight ³ => 1 ton of Concrete => 0.05 tons of CO₂ equivalent released

1) Deleted from the EPA website in April of 2017 "under the leadership of President Trump and Administrator Pruitt." (but my copy can still be viewed/downloaded at <u>THIS LINK</u>)

2) www.cement.org

3) www.cement.org/cement-concrete-basics/concrete-materials

Putting concrete's carbon footprint into an energy perspective: What fraction of U.S. concrete production is used to produce energy? A "typical" nuclear plant requires "up to 350,000 cubic yards" of concrete 1 Which, given **concrete's density**² of 1.9 tons/yd³ => 665,000 tons **Concrete** Which is 11% Portland cement => 73,000 tons **Portland cement** That typical nuclear plant produces ~ 1.5 GW of electrical power Ratio of nuclear plant Portland cement use to power produced: = 73 kilo-tons cement /1.5 GW => 0.049 tons **Portland cement** / kW And given that Nuclear plants operate for at least 40 years, this translates into: = 0.0012 tons Portland cement / kW-yr for a nuclear plant

> 1) www.concreteconstruction.net/construction/construction-of-nuclear-power-stations.aspx 2) http://hypertextbook.com/facts/1999/KatrinaJones.shtml

Repeating that calculation for hydroelectric dams: There really isn't a "typical" dam – designs vary too much by location But we can use data from two large U.S. hydroelectric dams: Hoover Dam: 3.25 million yd³ concrete / 2.8 GW power capacity ¹ $(3.25 \times 10^6 \text{ yd}^3 \text{ Concrete})(1.9 \text{ tons/yd}^3)(11\%) => 679,000 \text{ tons Portland cement}$ => 0.24 tons Portland cement / kW Bonneville Dam: 750,000 yd³ concrete / 1.189 GW power capacity ^{2, 3} $(7.5 \times 10^5 \text{ yd}^3 \text{ Concrete})(1.9 \text{ tons/yd}^3)(11\%) => 157,000 \text{ tons Portland cement}$ => 0.13 tons Portland cement / kW Average is 0.185 tons Portland cement / kW And given hydroelectric dam lifetimes of \sim 100 years, this translates into:

= 0.0013 tons Portland cement / kW-yr for a hydroelectric plant

http://en.wikipedia.org/wiki/Hoover_Dam
 http://en.wikipedia.org/wiki/Bonneville_Dam
 www.asce.org/People-and-Projects/Projects/Landmarks/Bonneville-Dam,-Columbia-River-System/

Finally, using those ratios to calculate carbon footprints: From my note set on U.S. Power Production & Consumption (pptx / pdf / key) Average total U.S. power is $\sim \frac{1}{2}$ Tera-Watt In 2016, nuclear plants produced 19.7% of that power => 9.8 x 10⁷ kW with 0.0012 tons Portland cement / kW-yr for a nuclear plant that translates into 117,600 tons **Portland cement** / yr, and thus: Total U.S. nuclear footprint = 52,920 tons of CO₂ equivalent In 2016 hydroelectric dams produced 6.3% of that power => 3.1 x 10⁷ kW with 0.0013 tons Portland cement / kW-yr for a hydroelectric plant that translates into 40,300 tons **Portland cement** / yr, and thus: Total U.S. hydro footprint = 18,135 tons of CO₂ equivalent

Comparing carbon footprint of different types of existing U.S. power plants: In Where Do We Go from Here? (pptx / pdf / key) analysis of carbon tax impact, I found: Conventional Coal => 0.001 metric tonne CO_2 eq. / kW-hr => 9.6 ton CO_2 eq. / kW-yr OCGT Natural Gas => 0.0007 metric tonne CO₂ eq. / kW-hr => 6.7 ton CO₂ eq. / kW-yr CCGT Natural Gas => 0.00045 metric tonne CO_2 eq. / kW-hr => 4.3 ton CO_2 eq. / kW-yr In 2016 **COAL** provided 30.4% of U.S. power => 1.52 x 10⁸ kW Carbon footprint = $(1.52 \times 10^8 \text{ kW})(9.6 \text{ ton/kW-yr}) = 1.5 \times 10^9 \text{ tons } CO_2 / \text{ yr}$ = 28,300 times Nuclear's current carbon footprint = 82,700 times Hydro's current carbon footprint In 2016 NATURAL GAS provided 33.8% of U.S. power => $1.69 \times 10^8 \text{ kW}$ Which, if it were produced using half OCGT and half CCGT, would represent Carbon footprint = $(1.69 \times 10^8 \text{ kW})(5.5 \text{ ton/kW-yr}) = 9.3 \times 10^8 \text{ tons } CO_2 / \text{ yr}$ = 17,600 times Nuclear's current carbon footprint = 51,300 times Hydro's current carbon footprint

Comparing carbon footprint for each kW-hour of power you consume:

From top of preceding page, converting kW-yr to kW-h, and ton to kg:

Conventional Coal Power:9.6 ton CO_2 eq. / kW-yr=>0.99 kg CO_2 eq. / kW-hrOCGT Natural Gas Power:6.7 ton CO_2 eq. / kW-yr=>0.69 kg CO_2 eq. / kW-hrCCGT Natural Gas Power:4.3 ton CO_2 eq. / kW-yr=>0.44 kg CO_2 eq. / kW-hr

From two pages ago, converting GW-yr to kW-h, and ton to kg:

Nuclear Power:52,920 ton CO_2 eq. / 98 GW-yr =>0.000055 kg CO_2 eq. / kW-hrHydro Power:18,135 ton CO_2 eq. / 31 GW-yr =>0.000061 kg CO_2 eq. / kW-hr

Nuclear's carbon footprint / kW-hr is ~ 10,000 lower than for fossil fuels Hydro's carbon footprint / kW-hr is ~ 10,000 lower than for fossil fuels

How can this be, given nuclear and hydro's "heavy" use of concrete? Their concrete keeps them producing power for a VERY LONG time (40 yrs / 100 yrs) And they use only a VERY SMALL fraction of our total 86 million tons of cement / yr A nuclear plant requires 0.0012 tons Portland cement / kW-yr Now producing 19.7% of the U.S.'s ¹/₂ Tera-watt, nuclear thus requires: $=> (0.0012 \text{ cement/kw-yr})(19.7\%)(0.5x10^{9}\text{kW}) = 118,200 \text{ tons cement / yr}$ = 0.14% of total U.S. Portland cement production => Only 0.71% if we produced ALL OF OUR POWER via nuclear! A hydroelectric dam requires 0.0013 tons Portland cement / kW-yr Now producing 6.3% of the U.S.'s ¹/₂ Tera-watt, hydro thus requires: $=> (0.0013 \text{ cement/kw-yr})(6.3\%)(0.5x10^{9}\text{kW}) = 40,950 \text{ tons cement / yr}$ = 0.047% of total U.S. Portland cement production => Only 0.76% if we produced **ALL OF OUR POWER** via hydro!

Preceding was an example of life cycle analysis (LCA) Which sometimes reveals **big differences** between: Ongoing (operational) carbon footprint vs. life-cycle carbon footprint Life cycle analyses (LCA's) integrate in effects of **all** materials and processes used to manufacture **and** operate **and** decommission/dispose of that technology Here it was suggested that zero carbon footprint of nuclear and hydro power would, with full LCA, instead yield significant non-zero carbon footprint But in this case I could rebut that suggestion based on only a little web browsing Proving (once again) that for energy you can't believe all that you hear! But principle is valid and lifecycle analyses CAN make a big difference!

LCA's also raise doubts about another green technology: Electric Cars

First LCA criticism: Their source of power

In the U.S. most of THAT power now comes from fossil fuel combustion

Coal plant power is actually **dirtier** than power from gasoline auto engines

Because we've been reducing auto emissions for half a century!

Result: Carbon footprint of gasoline burning cars can actually be LOWER than the carbon footprint of an electric car

"Won't that change as we clean up our electric power system?"

Yes, for same reasons Si PV's carbon footprint will also decrease!

Second LCA criticism of electric cars:

Their batteries require huge masses of exotic metals

- Mined at great energy and pollution costs
- Refined at great energy and pollution costs
- Transported from worldwide sources (=> more energy / carbon pollution)

World's largest source of lithium, deep in Chile's remote Altacama desert: Salar de Altacama (dry lake)

World's largest source of **cobalt** (main component of Li battery electrodes): Katanga, Democratic Republic of the Congo

Left photo: http://en.wikipedia.org/wiki/Salar_de_Atacama Right photo: http://in.reuters.com/article/2013/02/19/drcongo-mining-idINDEE91I03520130219 With combined LCA issues leading to reports such as these:

In the press:

How environmentally friendly are electric cars? (BBC News, 11 April 2013)

Buyer beware: There are shades of greenness (New York Times, 26 January 2007)

From half million member international Institute of Electrical & Electronic Engineers:

How green is my plug-in? (IEEE Spectrum - March 2009)

Speed bumps ahead for electric vehicle charging (IEEE Spectrum Magazine - January 2010)

Unclean at any speed: Electric cars don't solve the automobile's environmental problems (IEEE Spectrum Magazine - July 2013)

The most credible major study of electric cars I've found: Prepared by the U.S. National Academies of Science and Engineering: Transitions to Alternative Transportation Technologies: Plug-in Hybrid Electric Vehicles (2010) They studied alternative hybrid electric car designs Which, to minimize carbon emissions, would use ONLY batteries for early miles Thus more numerous **short auto trips** would use zero gasoline Alternate designs were designated: PHEV-10 = Plug-in Hybrid Electric Vehicle – 10 initial miles on battery PHEV-40 = Plug-in Hybrid Electric Vehicle – 40 initial miles on battery With other acronyms: HEV = Hybrid Electric Vehicle (non plug-in)

GHG = Green House Gas

Conclusions of this national academies report:

From "Results and Conclusions" chapter (page 33):

PHEV-10s will emit less carbon dioxide than non-hybrid vehicles, but save little relative to HEVs after accounting for emissions at the generating stations that supply the electric power.

PHEV-40s are more effective than PHEV-10s, but the GHG benefits are small unless the grid is decarbonized with renewable energy, nuclear plants, or fossil fuel fired plants equipped with carbon capture and storage systems

THAT IS: Compared to gasoline cars, plug-in electric cars will make little difference As long as they are still charged from carbon-fueled electrical grid
Further, this report paid little attention to carbon footprint of materials It's thus possible that greenhouse impact of electric cars is now negative As has been suggested by a number of critics!

Leading, finally, to the topic of carbon sequestration Which is the idea that, at the carbon-burning power plants, we trap carbon gases And somehow prevent them from entering the atmosphere Making this easier: Coal power plant use of IG (integrated gasification) Which (from carbon fuels lecture) uses heat + steam to drive these conversions: $3C (coal) + O_2 + H_2O => H_2 + 3 CO$ followed by: $CO + H_2O => H_2 + CO_2$

This is done **before** the power plant's combustion/steam production step With only the hydrogen ("syngas") then used for that combustion! Opening the possibility of trapping that then diverted CO₂

But sequestration will be made a lot HARDER by:

(From earlier slide in this lecture)

Average greenhouse gas lifetimes in atmosphere (in years):

Gas:	CO ₂	CH ₄	N ₂ O	CFC-11	CFC-12	HCFC-22	HFC-23	SF ₆	CF ₄
Life ¹ :	50	12	114		100		270	3200	
Life ² :	50-200	12	120	50		12			50000
Life ³ :	100-300	12	121	45	100	11.9		3200	

That is, majority of studies / more recent studies now say that

 CO_2 now in the atmosphere, will stay in atmosphere for hundreds of years

So to make a difference, we will have to sequester new CO₂ for CENTURIES

To give atmosphere time to purge CO₂ already present

¹Source: www.acs.org/content/acs/en/climatescience/greenhousegases/properties.html ²Source: Introduction to Engineering and the Environment - Rubin (p. 471) ³Source: http://cdiac.ornl.gov/pns/current_ghg.html But aren't they **already** successfully sequestering CO₂?

That's certainly what the advertising campaign about "clean coal" suggested!

Versus a 2008 Congressional Research Service Report to Congress:

Page 9:

"Coal-fired IGCC experience in the United States is limited to a handful of research and prototype plants, none of which is designed for carbon capture.

A commercial IGCC plant is being constructed by Duke energy . . . and other projects have been proposed. However, some other **power plant developers will not build IGCC plants because of concerns over cost and the reliability of the technology**"

Page 30:

"The estimates of the cost and performance effects of installing carbon controls are uncertain because no power plants have been built with full-scale carbon capture"

Page 31:

"Amine scrubbing (of CO₂) is estimated to cut a coal plant's electricity output by 30% to 40%

... cost for building a coal plant with amine scrubbing is an estimated 61% higher"

Thus while not QUITE a fantasy, "clean coal" is certainly NOT a reality!

Source: CRS Report to Congress – "Power Plants: Characteristics and Costs" (November 13, 2008) - Order Code RL34746

Suggested CO₂ sequestration techniques:

Helping natural sequestration along:

1) Create new peat bogs: Which are very efficient at capturing carbon

2) **Reforestation:** Another of nature's prime ways of capturing carbon

3) Wetland restoration:

Wikipedia reports that they store 14.5% of world's soil carbon While occupying only 6% of land surface area

Or manmade sequestration:

4) Iron or Urea fertilization of seas

To induce phytoplankton growth which would then metabolize CO₂ There've been Fe trials but are strong doubts about quantities required As well as concerns about such wholesale tinkering with seas 5) High pressure injection into cavities created by fossil fuel removal

Shoot CO_2 down pipes used earlier to remove oil or gas, then cap them off Or plug up entrances to depleted coal mines, and fill with CO_2

Hold it!

I grew up atop the San Andreas Fault - I **know** how active the earth can be! What would a big earthquake do to a CO₂ storage site?

A related idea that would use un-mineable coal seams

5b) Enhanced Coal Bed Methane Extraction (ECBM):

Inject CO₂ into coal seam, driving out methane absorbed to the coal

Producing methane (for use), and subsidizing cost of pumping in the CO_2

But if methane is then burned, it will then release more CO_2

So would there really be any **net** sequestration?

The estimates on ECBM carbon sequestration:

Net carbon sequestration (presumably = CO_2 in, minus methane out)¹

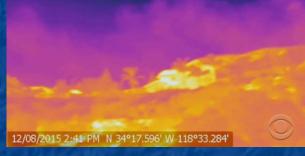
For major international coal fields in designated regions:

Region	Country	Carbon Sequestration Potential
San Juan	U.S.	1.4 giga-tonne
Kuznetsk	Russia	1 giga-tonne
Bowen	Australia	0.87 giga-tonne
Ordos	China	0.66 giga-tonne
Sumatra	Indonesia	0.37 giga-tonne
Canbay	India	0.07 giga-tonne Total ~ 4.4 Gt

From earlier in this lecture, man's annual production of $CO_2 = 29.8$ Gt

ECBM potential sounds interesting – But it would encourage coal/gas use And are we really ready to accept the coal + gas industry's numbers?

¹Source: Energy System Engineering – Evaluation and Implementation – Vanek et al. (p. 215)


BREAKING NEWS:

(revisited)

And regarding ALL "Pump a gas into the ground and forget" schemes:

Remember the 2015-16 Porter Ranch fiasco?

from my Fossil Fuels (pptx / pdf / key) note set:

The same idea of pumping gas into abandoned wells
 But at Porter Ranch they only tried storing the gas for a few months
 And we're to believe they could keep gases buried for centuries?
 (This didn't even require the San Andreas Fault breaking loose!!!)

6) High pressure injection into saline aquifers

Which are common but, because of salinity, not used for drinking or farming It's claimed that in the US, majority of power plants are located **over** such aquifers We'd then pump CO₂ down into aquifer water **flowing** (slowly) by SOME of that CO₂ might eventually precipitate out as solid carbonate Rather than capacities, test projects instead target storage **rates**²:

Project:	Country:	Sequestration Rate:
Brindisi	Italy	8 x 10 ⁻⁶ giga-tonnes/year
Porto Tolie	Italy	< 10 ⁻³ giga-tonnes/year
Belchatow	Poland	10-4 giga-tonnes/year
Vattenfall	Germany	< 6 x 10 ⁻⁴ giga-tonnes/year
Luzhou	China	6 x 10 ⁻⁵ giga-tonnes/year

Versus man's production of $CO_2 = 29.8$ giga-tonnes / year

²Source: Energy System Engineering – Evaluation and Implementation – Vanek et al. (p. 217)

7) Conversion of CO₂ into inert materials

Finally! Something more plausible than, over the span of centuries: - Pressurized CO₂ gas STAYING in abandoned oil/gas well or coal mine! - Carbonated salt water NOT LOOSING its fizz! Here, instead, CO₂ would be converted to carbonate minerals Which are common, and are known to be stable over millennia However: HOW will it be converted, and at what energy cost? Converted at power plants via reactions with minerals such as Ca or Mg Reactions don't require energy input, they release energy (albeit slowly) So would still use heat, but get more heat back => power production But required quantities of Ca / Mg => Major energy / environmental challenges An Introduction to Sustainable Energy Systems: WeCanFigureThisOut.org/ENERGY/Energy home.htm

A more acceptable alternative? 8) Injection into ocean bottom basalt formations As recently described in the New Scientist (22 July 2014) - Rock Solid Solution: "CarbFix³" process pumped CO₂ into wastewater from Icelandic geothermal plant Re-injected water into rock formations, Where it reacted with magnesium silicates Article claimed process could work in basalt as well as "mantle peridotite" Basalt is what makes up most of earth's ocean bottoms **Practicality? Scalability?** Hard to tell as was only interview with project leader But to me, the idea of mimicking geological processes to solidify CO₂ makes sense I'd also look toward possible sequestration via cultivated bacteria / algae

³Website: https://www.or.is/en/projects/carbfix

My bottom line take on current carbon sequestration ideas? Plans to simply pump gaseous CO₂ into holes just do not seem plausible I cannot believe that a pressurized gas will stay in place for centuries Even if this is THE STRATEGY backed by the major fossil fuel producers Given that time span, I believe CO₂ will have to be chemically converted/bound There are a **huge** number of such ideas floating around Several times more ideas than I described above! But these ideas are immature, untested, and potentially unscalable Leading **me** back to the one **sure** way I know of controlling atmospheric CO₂: Radically diminishing its production . . . as soon as possible

Credits / Acknowledgements

Some materials used in this class were developed under a National Science Foundation "Research Initiation Grant in Engineering Education" (RIGEE).

Other materials, including the WeCanFigureThisOut.org "Virtual Lab" science education website, were developed under even earlier NSF "Course, Curriculum and Laboratory Improvement" (CCLI) and "Nanoscience Undergraduate Education" (NUE) awards.

This set of notes was authored by John C. Bean who also created all figures not explicitly credited above.

Copyright John C. Bean

(However, permission is granted for use by individual instructors in non-profit academic institutions)